• / 111
  • 下载费用:30 金币  

人工智能标准化白皮书(2018年度版~).doc

关 键 词:
人工智能 标准化 白皮书 2018 年度
资源描述:
-_人工智能标准化白皮书(2018 版)指导单位:国家标准化管理委员会工业二部编写单位:中国电子技术标准化研究院二零一八年一月编写单位(排名不分先后)中国电子技术标准化研究院中国科学院自动化研究所 北京理工大学清华大学北京大学中国人民大学北京航空航天大学科大讯飞股份有限公司华为技术有限公司国际商业机器(中国)有限公司阿里云计算有限公司中国科学院计算技术研究所中国电信集团公司腾讯互联网加(深圳)有限公司阿里巴巴网络技术有限公司上海计算机软件技术开发中心上海智臻智能网络科技股份有限公司北京爱奇艺科技有限公司北京有生志科技有限公司极限元(北京)智能科技股份有限公司北京字节跳动科技有限公司(今日头条) 北京商汤科技开发有限公司浙江蚂蚁小微金融服务集团有限公司百度网络技术有限公司英特尔(中国)有限公司 松下电器(中国)有限公司重庆凯泽科技股份有限公司海尔工业智能研究院有限公司重庆中科云从科技有限公司北京格灵深瞳信息技术有限公司目录编写单位中国电子技术标准化研究院中国科学院自动化研究所 北京理工大学21前言11.1研究背景11.2研究目标及意义22人工智能概述32.1人工智能的历史及概念32.1.1人工智能的起源与历史32.1.2人工智能的概念52.2人工智能的特征72.3人工智能参考框架83人工智能发展现状及趋势113.1人工智能关键技术113.1.1机器学习113.1.2知识图谱133.1.3自然语言处理143.1.4人机交互153.1.5计算机视觉173.1.6Th物特征识别193.1.7虚拟现实/增强现实213.1.8人工智能技术发展趋势213.2人工智能产业现状及趋势223.2.1智能基础设施233.2.2智能信息及数据243.2.3智能技术服务253.2.4智能产品253.2.5人工智能行业应用273.2.6人工智能产业发展趋势313.3安全、伦理、隐私问题323.3.1人工智能的安全问题323.3.2人工智能的伦理问题333.3.3人工智能的隐私问题343.4人工智能标准化的重要作用354人工智能标准化现状374.1国际标准化现状374.1.1ISO/IEC JTC 1374.1.2ISO404.1.3IEC404.1.4ITU414.2国外标准化现状414.2.1IEEE414.2.2NIST414.2.3其它424.3国内标准化现状424.3.1全国信息技术标准化技术委员会424.3.2全国自动化系统与集成标准化技术委员会434.3.3全国音频、视频和多媒体标准化技术委员会434.3.4全国信息安全标准化技术委员会434.3.5全国智能运输系统标准化技术委员会444.4人工智能标准化面临的问题和挑战444.5人工智能标准需求分析454.6人工智能标准化组织机制建设465人工智能标准体系485.1人工智能标准体系结构485.2标准体系框架495.2.1基础标准515.2.2平台/支撑标准515.2.3关键技术标准515.2.4产品及服务标准535.2.5应用标准545.2.6安全/伦理标准565.3 近期急需制定标准566人工智能标准化工作重点建议59附件 1 人工智能标准明细表61附件 2 应用案例801 前言1.1 研究背景人工智能概念诞生于 1956 年,在半个多世纪的发展历程中,由于受到智能算法、计算速度、存储水平等多方面因素的影响,人工智能技术和应用发展经历了多次高潮和低谷。2006 年以来,以深度学习为代表的机器学习算法在机器视觉和语音识别等领域取得了极大的成功,识别准确性大幅提升,使人工智能再次受到学术界和产业界的广泛关注。云计算、大数据等技术在提升运算速度,降低计算成本的同时,也为人工智能发展提供了丰富的数据资源,协助训练出更加智能化的算法模型。人工智能的发展模式也从过去追求“用计算机模拟人工智能”,逐步转向以机器与人结合而成的增强型混合智能系统,用机器、人、网络结合成新的群智系统,以及用机器、人、网络和物结合成的更加复杂的智能系统。 作为新一轮产业变革的核心驱动力,人工智能在催生新技术、新产品的同时, 对传统行业也具备较强的赋能作用,能够引发经济结构的重大变革,实现社会生产力的整体跃升。人工智能将人从枯燥的劳动中解放出来,越来越多的简单性、重复性、危险性任务由人工智能系统完成,在减少人力投入,提高工作效率的同时,还能够比人类做得更快、更准确;人工智能还可以在教育、医疗、养老、环境保护、城市运行、司法服务等领域得到广泛应用,能够极大提高公共服务精准化水平,全面提升人民生活品质;同时,人工智能可帮助人类准确感知、预测、预警基础设施和社会安全运行的重大态势,及时把握群体认知及心理变化,主动作出决策反应,显著提高社会治理能力和水平,同时保障公共安全。 人工智能作为一项引领未来的战略技术,世界发达国家纷纷在新一轮国际竞争中争取掌握主导权,围绕人工智能出台规划和政策,对人工智能核心技术、顶尖人才、标准规范等进行部署,加快促进人工智能技术和产业发展。主要科技企业不断加大资金和人力投入,抢占人工智能发展制高点。2017 年,我国出台了《新一代人工智能发展规划》(国发〔2017〕35 号)、《促进新一代人工智能产业发展三年行动计划(2018-2020 年)》(工信部科〔2017〕315 号)等政策文件, 推动人工智能技术研发和产业化发展。目前,国内人工智能发展已具备一定的技术和产业基础,在芯片、数据、平台、应用等领域集聚了一批人工智能企业,在部分方向取得阶段性成果并向市场化发展。例如,人工智能在金融、安防、客服等行业领域已实现应用,在特定任务中语义识别、语音识别、人脸识别、图像识别技术的精度和效率已远超人工。 标准化工作对人工智能及其产业发展具有基础性、支撑性、引领性的作用, 既是推动产业创新发展的关键抓手,也是产业竞争的制高点。当前,在我国人工智能相关产品和服务不断丰富的同时,也出现了标准化程度不足的问题。人工智能涉及众多领域,虽然某些领域已具备一定的标准化基础,但是这些分散的标准化工作并不足以完全支撑整个人工智能领域。另一方面,人工智能属于新兴领域, 发展方兴未艾,从世界范围来看,标准化工作仍在起步过程中,尚未形成完善的标准体系,我国基本与国外处于同一起跑线,存在快速突破的机会窗口。只要瞄准机会,快速布局,完全有可能抢占标准创新的制高点,反之,则有可能丧失良机。因此,迫切需要把握机遇,加快对人工智能技术及产业发展的研究,系统梳理、加快研制人工智能各领域的标准体系,明确标准之间的依存性与制约关系, 建立统一完善的标准体系,以标准的手段促进我国人工智能技术、产业蓬勃发展。 1.2 研究目标及意义本白皮书前期在国标委工业二部和工信部科技司的指导下,通过梳理人工智能技术、应用和产业演进情况,分析人工智能的技术热点、行业动态和未来趋势, 从支撑人工智能产业整体发展的角度出发,研究制定了能够适应和引导人工智能产业发展的标准体系,进而提出近期急需研制的基础和关键标准项目。 本白皮书并不预期成为人工智能领域的全面技术和产业综述,不求面面俱到, 仅针对目前人工智能领域涵盖的技术热点和产业情况进行分析,研究提出人工智 能标准体系。人工智能标准化工作尚处于起步阶段,本白皮书只作为人工智能领 域技术、产业和标准化之间初始的连接纽带,并将在今后不断根据技术、产业和 标准化的发展需求进行修订。本白皮书不过多地给出人工智能领域观点性的陈述, 力求以较为浅显易懂的语言和方式进行阐述。 本白皮书的意义在于与业界分享人工智能领域的研究成果和实践经验,呼吁社会各界共同加强人工智能领域的技术研究、产业投入、标准建设与服务应用, 共同推动人工智能及其产业发展。2 人工智能概述2.1 人工智能的历史及概念2.1.1 人工智能的起源与历史人工智能始于 20 世纪 50 年代,至今大致分为三个发展阶段:第一阶段(20 世纪 50 年代——80 年代)。这一阶段人工智能刚诞生,基于抽象数学推理的可编程数字计算机已经出现,符号主义(Symbolism)快速发展,但由于很多事物不能形式化表达,建立的模型存在一定的局限性。此外,随着计算任务的复杂性不断加大,人工智能发展一度遇到瓶颈;第二阶段(20 世纪 80 年代——90 年代末)。在这一阶段,专家系统得到快速发展,数学模型有重大突破,但由于专家系统在知识获取、推理能力等方面的不足,以及开发成本高等原因,人工智能的发展又一次进入低谷期;第三阶段(21 世纪初——至今)。随着大数据的积聚、理论算法的革新、计算能力的提升,人工智能在很多应用领域取得了突破性进展, 迎来了又一个繁荣时期。人工智能具体的发展历程如图 1 所示。1976年,机器翻译 1985年, 等项目的 出现了更失败及一 强可视化些学术报 效果的决告的负面 策树模型影响,人 和突破早工智能的 期感知机经费普遍 局限的多1997年, Deep Blue战胜世界国际象棋冠军Garry Kasparov 1987年,LISP机市场崩塌2006年,Hinton和他的学生开始深度学习2014年, 2016年3月,微软公 AlphaGo以4司发布比1战胜世1956年达特茅斯会议提出“人工智能”全球第 界围棋冠军一款个人智能助理微软小娜李世石1959年,Arthur Samuel减少层人工神提出了机器学习经网络2010年, 大数据时代到来2017 年10月, DeepMind 团队公布了最强 版 的AlphaGo Zero1950s1960s1970s1980s1976- 1982-1990s2000s2010s2020s1956-197619821987第一次繁荣期达特茅斯会议,确定了人工智能的概念和发展目标第一次 第二次低谷期 繁荣期1987-1997第二次低谷期遭受质疑 具备逻辑 技术领域再次批评,运 规则推演 陷入瓶颈,抽算能力不 和特定领 象推理不再被足、计算 域回答解 继续关注,基复杂度较 决问题的 于符号处理的高、常识 专家系统 模型遭到反对与推理实 盛行,及现难度较 五代计算大等机的发展1997-2010复苏期计算性能的提升与互联网技术的快速普及2010-增长爆发期新一代信息技术引发信息环境与数据基础变革,海量图像语音文本等多模态数据不断出现, 计算能力提高图 1 人工智能发展历史长期以来,制造具有智能的机器一直是人类的重大梦想。早在 1950 年,AlanTuring 在《计算机器与智能》中就阐述了对人工智能的思考。他提出的图灵测试是机器智能的重要测量手段,后来还衍生出了视觉图灵测试等测量方法。1956年,“人工智能”这个词首次出现在达特茅斯会议上,标志着其作为一个研究领域的正式诞生。六十年来,人工智能发展潮起潮落的同时,基本思想可大致划分为四个流派:符号主义(Symbolism)、连接主义(Connectionism)、行为主义(Behaviourism)和统计主义(Statisticsism)(注:由于篇幅原因,本白皮书不对四个流派进行详细阐述)。这四个流派从不同侧面抓住了智能的部分特征,在“制造”人工智能方面都取得了里程碑式的成就。 1959 年,Arthur Samuel 提出了机器学习,机器学习将传统的制造智能演化为通过学习能力来获取智能,推动人工智能进入了第一次繁荣期。20 世纪 70 年代末期专家系统的出现,实现了人工智能从理论研究走向实际应用,从一般思维规律探索走向专门知识应用的重大突破,将人工智能的研究推向了新高潮。然而, 机器学习的模型仍然是“人工”的,也有很大的局限性。随着专家系统应用的不断深入,专家系统自身存在的知识获取难、知识领域窄、推理能力弱、实用性差等问题逐步暴露。从 1976 年开始,人工智能的研究进入长达 6 年的萧瑟期。 在 80 年代中期,随着美国、日本立项支持人工智能研究,以及以知识工程为主导的机器学习方法的发展,出现了具有更强可视化效果的决策树模型和突破早期感知机局限的多层人工神经网络,由此带来了人工智能的又一次繁荣期。然而,当时的计算机难以模拟复杂度高及规模大的神经网络,仍有一定的局限性。1987 年由于 LISP 机市场崩塌,美国取消了人工智能预算,日本第五代计算机项目失败并退出市场,专家系统进展缓慢,人工智能又进入了萧瑟期。 1997 年,IBM 深蓝(Deep Blue)战胜国际象棋世界冠军 Garry Kasparov。这是一次具有里程碑意义的成功,它代表了基于规则的人工智能的胜利。2006 年,在 Hinton 和他的学生的推动下,深度学习开始备受关注,为后来人工智能的发展带来了重大影响。从 2010 年开始,人工智能进入爆发式的发展阶段,其最主要的驱动力是大数据时代的到来,运算能力及机器学习算法得到提高。人工智能快速发展,产业界也开始不断涌现出新的研发成果:2011 年,IBM Waston 在综艺节目《危险边缘》中战胜了最高奖金得主和连胜纪录保持者;2012 年, 谷歌大脑通过模仿人类大脑在没有人类指导的情况下,利用非监督深度学习方法从大量视频中成功学习到识别出一只猫的能力;2014 年,微软公司推出了一款实时口译系统,可以模仿说话者的声音并保留其口音;2014 年,微软公司发布全球第一款个人智能助理微软小娜;2014 年,亚马逊发布至今为止最成功的智能音箱产品 Echo 和个人助手 Alexa;2016 年,谷歌 AlphaGo 机器人在围棋比赛中击败了世界冠军李世石;2017 年,苹果公司在原来个人助理 Siri 的基础上推出了智能私人助理 Siri 和智能音响 HomePod。目前,世界各国都开始重视人工智能的发展。2017 年 6 月 29 日,首届世界智能大会在天津召开。中国工程院院士潘云鹤在大会主论坛作了题为“中国新一代人工智能”的主题演讲,报告中概括了世界各国在人工智能研究方面的战略:2016 年 5 月,美国白宫发表了《为人工智能的未来做好准备》;英国 2016 年 12 月发布《人工智能:未来决策制定的机遇和影响》;法国在 2017 年 4 月制定了《国家人工智能战略》;德国在2017 年5 月颁布全国第一部自动驾驶的法律;在中国, 据不完全统计,2017 年运营的人工智能公司接近 400 家,行业巨头百度、腾讯、阿里巴巴等都不断在人工智能领域发力。从数量、投资等角度来看,自然语言处理、机器人、计算机视觉成为了人工智能最为热门的三个产业方向。2.1.2 人工智能的概念人工智能作为一门前沿交叉学科,其定义一直存有不同的观点:《人工智能——一种现代方法》中将已有的一些人工智能定义分为四类:像人一样思考的系统、像人一样行动的系统、理性地思考的系统、理性地行动的系统。维基百科上定义“人工智能就是机器展现出的智能”,即只要是某种机器,具有某种或某些“智能”的特征或表现,都应该算作“人工智能”。大英百科全书则限定人工智能是数字计算机或者数字计算机控制的机器人在执行智能生物体才有的一些任务上的能力。百度百科定义人工智能是“研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学”,将其视为计算机科学的一个分支,指出其研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。本白皮书认为,人工智能是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、 方法、技术及应用系统。人工智能的定义对人工智能学科的基本思想和内容作出了解释,即围绕智能活动而构造的人工系统。人工智能是知识的工程,是机器模仿人类利用知识完成一定行为的过程。根据人工智能是否能真正实现推理、思考和解决问题,可以将人工智能分为弱人工智能和强人工智能。 弱人工智能是指不能真正实现推理和解决问题的智能机器,这些机器表面看像是智能的,但是并不真正拥有智能,也不会有自主意识。迄今为止的人工智能系统都还是实现特定功能的专用智能,而不是像人类智能那样能够不断适应复杂的新环境并不断涌现出新的功能,因此都还是弱人工智能。目前的主流研究仍然集中于弱人工智能,并取得了显著进步,如语音识别、图像处理和物体分割、机器翻译等方面取得了重大突破,甚至可以接近或超越人类水平。 强人工智能是指真正能思维的智能机器,并且认为这样的机器是有知觉的和自我意识的,这类机器可分为类人(机器的思考和推理类似人的思维)与非类人(机器产生了和人完全不一样的知觉和意识,使用和人完全不一样的推理方式) 两大类。从一般意义来说,达到人类水平的、能够自适应地应对外界环境挑战的、具有自我意识的人工智能称为“通用人工智能”、“强人工智能”或“类人智能”。强人工智能不仅在哲学上存在巨大争论(涉及到思维与意识等根本问题的讨论),在技术上的研究也具有极大的挑战性。强人工智能当前鲜有进展,美国私营部门的专家及国家科技委员会比较支持的观点是,至少在未来几十年内难以实现。 靠符号主义、连接主义、行为主义和统计主义这四个流派的经典路线就能设计制造出强人工智能吗?其中一个主流看法是:即使有更高性能的计算平台和更大规模的大数据助力,也还只是量变,不是质变,人类对自身智能的认识还处在初级阶段,在人类真正理解智能机理之前,不可能制造出强人工智能。理解大脑产生智能的机理是脑科学的终极性问题,绝大多数脑科学专家都认为这是一个数百年乃至数千年甚至永远都解决不了的问题。 通向强人工智能还有一条“新”路线,这里称为“仿真主义”。这条新路线通过制造先进的大脑探测工具从结构上解析大脑,再利用工程技术手段构造出模仿大脑神经网络基元及结构的仿脑装置,最后通过环境刺激和交互训练仿真大脑实现类人智能,简言之,“先结构,后功能”。虽然这项工程也十分困难,但都是有可能在数十年内解决的工程技术问题,而不像“理解大脑”这个科学问题那 样遥不可及。 仿真主义可以说是符号主义、连接主义、行为主义和统计主义之后的第五个流派,和前四个流派有着千丝万缕的联系,也是前四个流派通向强人工智能的关键一环。经典计算机是数理逻辑的开关电路实现,采用冯•诺依曼体系结构,可以作为逻辑推理等专用智能的实现载体。但要靠经典计算机不可能实现强人工智能。要按仿真主义的路线“仿脑”,就必须设计制造全新的软硬件系统,这就是“类脑计算机”,或者更准确地称为“仿脑机”。“仿脑机”是“仿真工程”的标志性成果,也是“仿脑工程”通向强人工智能之路的重要里程碑。 2.2 人工智能的特征(1)由人类设计,为人类服务,本质为计算,基础为数据。从根本上说, 人工智能系统必须以人为本,这些系统是人类设计出的机器,按照人类设定的程序逻辑或软件算法通过人类发明的芯片等硬件载体来运行或工作,其本质体现为计算,通过对数据的采集、加工、处理、分析和挖掘,形成有价值的信息流和知识模型,来为人类提供延伸人类能力的服务,来实现对人类期望的一些“智能行为”的模拟,在理想情况下必须体现服务人类的特点,而不应该伤害人类,特别是不应该有目的性地做出伤害人类的行为。 (2)能感知环境,能产生反应,能与人交互,能与人互补。人工智能系统应能借助传感器等器件产生对外界环境(包括人类)进行感知的能力,可以像人一样通过听觉、视觉、嗅觉、触觉等接收来自环境的各种信息,对外界输入产生文字、语音、表情、动作(控制执行机构)等必要的反应,甚至影响到环境或人类。借助于按钮、键盘、鼠标、屏幕、手势、体态、表情、力反馈、虚拟现实/ 增强现实等方式,人与机器间可以产生交互与互动,使机器设备越来越“理解” 人类乃至与人类共同协作、优势互补。这样,人工智能系统能够帮助人类做人类不擅长、不喜欢但机器能够完成的工作,而人类则适合于去做更需要创造性、洞察力、想象力、灵活性、多变性乃至用心领悟或需要感情的一些工作。 (3)有适应特性,有学习能力,有演化迭代,有连接扩展。人工智能系统在理想情况下应具有一定的自适应特性和学习能力,即具有一定的随环境、数据或任务变化而自适应调节参数或更新优化模型的能力;并且,能够在此基础上通过与云、端、人、物越来越广泛深入数字化连接扩展,实现机器客体乃至人类主体的演化迭代,以使系统具有适应性、鲁棒性、灵活性、扩展性,来应对不断变化的现实环境,从而使人工智能系统在各行各业产生丰富的应用。 2.3 人工智能参考框架目前,人工智能领域尚未形成完善的参考框架。因此,本章基于人工智能的发展状况和应用特征,从人工智能信息流动的角度出发,提出一种人工智能参考框架(如图 2 所示),力图搭建较为完整的人工智能主体框架,描述人工智能系统总体工作流程,不受具体应用所限,适用于通用的人工智能领域需求。智能信息链信息提供者信息处理者智能信息建模、抽取、预处理、训练数据等运动、显示、发声、交互、合成等智能信息感智能信息表示知与形成智能执行智能推理智能决策与输出管理基础设施提供者...基础平台智能芯片新型传感器分类、排序、预测等搜索与匹配等智能感知信息系统协调者智能产品及行业应用安全、隐私、伦理IT价值链图 2 人工智能参考框架图人工智能参考框架提供了基于“角色—活动—功能”的层级分类体系,从“智能信息链”(水平轴)和“IT 价值链”(垂直轴)两个维度阐述了人工智能系统框架。“智能信息链”反映从智能信息感知、智能信息表示与形成、智能 推理、智能决策、智能执行与输出的一般过程。在这个过程中,智能信息是流动的载体,经历了“数据—信息—知识—智慧”的凝练过程。“IT 价值链”从人工智能的底层基础设施、信息(提供和处理技术实现)到系统的产业生态过程, 反映人工智能为信息技术产业带来的价值。此外,人工智能系统还有其它非常重要的框架构件:安全、隐私、伦理和管理。人工智能系统主要由基础设施提供者、信息提供者、信息处理者和系统协调者 4 个角色组成。 (1)基础设施提供者基础设施提供者为人工智能系统提供计算能力支持,实现与外部世界的沟通, 并通过基础平台实现支撑。计算能力由智能芯片(CPU、GPU、ASIC、FPGA 等硬件加速芯片以及其它智能芯片)等硬件系统开发商提供;与外部世界的沟通通 过新型传感器制造商提供;基础平台包括分布式计算框架提供商及网络提供商提 供平台保障和支持,即包括云存储和计算、互联互通网络等。(2)信息提供者 信息提供者在人工智能领域是智能信息的来源。通过知识信息感知过程由数据提供商提供智能感知信息,包括原始数据资源和数据集。原始数据资源的感知涉及到图形、图像、语音、文本的识别,还涉及到传统设备的物联网数据,包括已有系统的业务数据以及力、位移、液位、温度、湿度等感知数据。 (3)信息处理者信息处理者是指人工智能领域中技术和服务提供商。信息处理者的主要活动包括智能信息表示与形成、智能推理、智能决策及智能执行与输出。智能信息处理者通常是算法工程师及技术服务提供商,通过计算框架、模型及通用技术,例如一些深度学习框架和机器学习算法模型等功能进行支撑。智能信息表示与形成是指为描述外围世界所作的一组约定,分阶段对智能信息进行符号化和形式化的智能信息建模、抽取、预处理、训练数据等。智能信息推理是指在计算机或智能系统中,模拟人类的智能推理方式,依据推理控制策略,利用形式化的信息进行机器思维和求解问题的过程,典型的功能是搜索与匹配。智能信息决策是指智能信息经过推理后进行决策的过程,通常提供分类、排序、预测等功能。智能执行与输出作为智能信息输出的环节,是对输入作出的响应,输出整个智能信息流动过程的结果,包括运动、显示、发声、交互、合成等功能。(4)系统协调者系统协调者提供人工智能系统必须满足的整体要求,包括政策、法律、资源和业务需求,以及为确保系统符合这些需求而进行的监控和审计活动。由于人工智能是多学科交叉领域,需要系统协调者定义和整合所需的应用活动,使其在人工智能领域的垂直系统中运行。系统协调者的功能之一是配置和管理人工智能参考框架中的其他角色来执行一个或多个功能,并维持人工智能系统的运行。(5)安全、隐私、伦理安全、隐私、伦理覆盖了人工智能领域的其他 4 个主要角色,对每个角色都有重要的影响作用。同时,安全、隐私、伦理处于管理角色的覆盖范围之内,与全部角色和活动都建立了相关联系。在安全、隐私、伦理模块,需要通过不同的技术手段和安全措施,构筑全方位、立体的安全防护体系,保护人工智能领域参与者的安全和隐私。(6)管理管理角色承担系统管理活动,包括软件调配、资源管理等内容,管理的功能是监视各种资源的运行状况,应对出现的性能或故障事件,使得各系统组件透明且可观。(7)智能产品及行业应用智能产品及行业应用指人工智能系统的产品和应用,是对人工智能整体解决方案的封装,将智能信息决策产品化、实现落地应用,其应用领域主要包括:智能制造、智能交通、智能家居、智能医疗、智能安防等。3 人工智能发展现状及趋势依据参考框架中所涉及到的人工智能相关技术,本节重点介绍近二十年来人工智能领域关键技术的发展状况,包括机器学习、知识图谱、自然语言处理、计算机视觉、人机交互、生物特征识别、虚拟现实/增强现实等关键技术。3.1 人工智能关键技术3.1.1 机器学习机器学习(Machine Learning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。(1)根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。监督学习 监督学习是利用已标记的有限训练数据集,通过某种学习策略/方法建立一个模型,实现对新数据/实例的标记(分类)/映射,最典型的监督学习算法包括回归和分类。监督学习要求训练样本的分类标签已知,分类标签精确度越高,样本越具有代表性,学习模型的准确度越高。监督学习在自然语言处理、信息检索、文本挖掘、手写体辨识、垃圾邮件侦测等领域获得了广泛应用。 无监督学习 无监督学习是利用无标记的有限数据描述隐藏在未标记数据中的结构/规律, 最典型的非监督学习算法包括单类密度估计、单类数据降维、聚类等。无监督学 习不需要训练样本和人工标注数据,便于压缩数据存储、减少计算量、提升算法 速度,还可以避免正、负样本偏移引起的分类错误问题。主要用于经济预测、异 常检测、数据挖掘、图像处理、模式识别等领域,例如组织大型计算机集群、社 交网络分析、市场分割、天文数据分析等。 强化学习 强化学习是智能系统从环境到行为映射的学习,以使强化信号函数值最大。由于外部环境提供的信息很少,强化学习系统必须靠自身的经历进行学习。强化学习的目标是学习从环境状态到行为的映射,使得智能体选择的行为能够获得环境最大的奖赏,使得外部环境对学习系统在某种意义下的评价为最佳。其在机器人控制、无人驾驶、下棋、工业控制等领域获得成功应用。 (2)根据学习方法可以将机器学习分为传统机器学习和深度学习。 传统机器学习传统机器学习从一些观测(训练)样本出发,试图发现不能通过原理分析获得的规律,实现对未来数据行为或趋势的准确预测。相关算法包括逻辑回归、隐马尔科夫方法、支持向量机方法、K 近邻方法、三层人工神经网络方法、Adaboost 算法、贝叶斯方法以及决策树方法等。传统机器学习平衡了学习结果的有效性与学习模型的可解释性,为解决有限样本的学习问题提供了一种框架,主要用于有限样本情况下的模式分类、回归分析、概率密度估计等。传统机器学习方法共同的重要理论基础之一是统计学,在自然语言处理、语音识别、图像识别、信息检索和生物信息等许多计算机领域获得了广泛应用。深度学习深度学习是建立深层结构模型的学习方法,典型的深度学习算法包括深度置信网络、卷积神经网络、受限玻尔兹曼机和循环神经网络等。深度学习又称为深度神经网络(指层数超过 3 层的神经网络)。深度学习作为机器学习研究中的一个新兴领域,由 Hinton 等人于 2006 年提出。深度学习源于多层神经网络,其实质是给出了一种将特征表示和学习合二为一的方式。深度学习的特点是放弃了可解释性,单纯追求学习的有效性。经过多年的摸索尝试和研究,已经产生了诸多深度神经网络的模型,其中卷积神经网络、循环神经网络是两类典型的模型。卷积神经网络常被应用于空间性分布数据;循环神经网络在神经网络中引入了记忆和反馈,常被应用于时间性分布数据。深度学习框架是进行深度学习的基础底层框架,一般包含主流的神经网络算法模型,提供稳定的深度学习 API,支持训练模型在服务器和 GPU、TPU 间的分布式学习,部分框架还具备在包括移动设备、云平台在内的多种平台上运行的移植能力,从而为深度学习算法带来前所未有的运行速度和实用性。目前主流的开源算法框架有 TensorFlow、Caffe/Caffe2、CNTK、MXNet、Paddle-paddle、Torch/PyTorch、Theano 等。(3)此外,机器学习的常见算法还包括迁移学习、主动学习和演化学习等。迁移学习 迁移学习是指当在某些领域无法取得足够多的数据进行模型训练时,利用另一领域数据获得的关系进行的学习。迁移学习可以把已训练好的模型参数迁移到新的模型指导新模型训练,可以更有效的学习底层规则、减少数据量。目前的迁移学习技术主要在变量有限的小规模应用中使用,如基于传感器网络的定位,文字分类和图像分类等。未来迁移学习将被广泛应用于解决更有挑战性的问题,如视频分类、社交网络分析、逻辑推理等。主动学习主动学习通过一定的算法查询最有用的未标记样本,并交由专家进行标记, 然后用查询到的样本训练分类模型来提高模型的精度。主动学习能够选择性地获取知识,通过较少的训练样本获得高性能的模型,最常用的策略是通过不确定性准则和差异性准则选取有效的样本。演化学习演化学习对优化问题性质要求极少,只需能够评估解的好坏即可,适用于求解复杂的优化问题,也能直接用于多目标优化。演化算法包括粒子群优化算法、多目标演化算法等。目前针对演化学习的研究主要集中在演化数据聚类、对演化数据更有效的分类,以及提供某种自适应机制以确定演化机制的影响等。3.1.2 知识图谱知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。 知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。 3.1.3 自然语言处理自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。 (1)机器翻译机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。目前非限定领域机器翻译中性能较佳的一种是统计机器翻译,包括训练及解码两个阶段。训练阶段的目标是获得模型参数,解码阶段的目标是利用所估计的参数和给定的优化目标,获取待翻译语句的最佳翻译结果。统计机器翻译主要包括语料预处理、词对齐、短语抽取、短语概率计算、最大熵调序等步骤。基于神经网络的端到端翻译方法不需要针对双语句子专门设计特征模型,而是直接把源语言句子的词串送入神经网络模型,经过神经网络的运算,得到目标语言句子的翻译结果。在基于端到端的机器翻译系统中,通常采用递归神经网络或卷积神经网络对句子进行表征建模,从海量训练数据中抽取语义信息,与基于短语的统计翻译相比,其翻译结果更加流畅自然,在实际应用中取得了较好的效果。(2)语义理解语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章 相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着 MCTest 数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问 答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。在数据采集方面,语义理解通过自动构造数据方法和自动构造填空型问题的方法来有效扩充数据资源。为了解决填充型问题,一些基于深度学习的方法相继提出,如基于注意力的神经网络方法。当前主流的模型是利用神经网络技术对篇章、问题建模,对答案的开始和终止位置进行预测,抽取出篇章片段。对于进一步泛化的答案,处理难度进一步提升,目前的语义理解技术仍有较大的提升空间。(3)问答系统问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。自然语言处理面临四大挑战:一是在词法、句法、语义、语用和语音等不同层面存在不确定性;二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;三是数据资源的不充分使其难以覆盖复杂的语言现象;四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算。3.1.4 人机交互人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术,以下对后四种与人工智能关联密切的典型交互手段进行介绍。(1)语音交互语音交互是一种高效的交互方式,是人以自然语音或机器合成语音同计算机 进行交互的综合性技术,结合了语言学、心理学、工程和计算机技术等领域的知 识。语音交互不仅要对语音识别和语音合成进行研究,还要对人在语音通道下的 交互机理、行为方式等进行研究。语音交互过程包括四部分:语音采集、语音识 别、语义理解和语音合成。语音采集完成音频的录入、采样及编码;语音识别完 成语音信息到机器可识别的文本信息的转化;语义理解根据语音识别转换后的文 本字符或命令完成相应的操作;语音合成完成文本信息到声音信息的转换。作为 人类沟通和获取信息最自然便捷的手段,语音交互比其他交互方式具备更多优势, 能为人机交互带来根本性变革,是大数据和认知计算时代未来发展的制高点,具 有广阔的发展前景和应用前景。(2)情感交互 情感是一种高层次的信息传递,而情感交互是一种交互状态,它在表达功能和信息时传递情感,勾起人们的记忆或内心的情愫。传统的人机交互无法理解和适应人的情绪或心境,缺乏情感理解和表达能力,计算机难以具有类似人一样的智能,也难以通过人机交互做到真正的和谐与自然。情感交互就是要赋予计算机类似于人一样的观察、理解和生成各种情感的能力,最终使计算机像人一样能进行自然、亲切和生动的交互。情感交互已经成为人工智能领域中的热点方向,旨在让人机交互变得更加自然。目前,在情感交互信息的处理方式、情感描述方式、情感数据获取和处理过程、情感表达方式等方面还有诸多技术挑战。 (3)体感交互体感交互是个体不需要借助任何复杂的控制系统,以体感技术为基础,直接通过肢体动作与周边数字设备装置和环境进行自然的交互。依照体感方式与原理的不同,体感技术主要分为三类:惯性感测、光学感测以及光学联合感测。体感交互通常由运动追踪、手势识别、运动捕捉、面部表情识别等一系列技术支撑。与其他交互手段相比,体感交互技术无论是硬件还是软件方面都有了较大的提升,交互设备向小型化、便携化、使用方便化等方面发展,大大降低了对用户的约束, 使得交互过程更加自然。目前,体感交互在游戏娱乐、医疗辅助与康复、全自动三维建模、辅助购物、眼动仪等领域有了较为广泛的应用。 (4)脑机交互脑机交互又称为脑机接口,指不依赖于外围神经和肌肉等神经通道,直接实现大脑与外界信息传递的通路。脑机接口系统检测中枢神经系统活动,并将其转化为人工输出指令,能够替代、修复、增强、补充或者改善中枢神经系统的正常输出,从而改变中枢神经系统与内外环境之间的交互作用。脑机交互通过对神经信号解码,实现脑信号到机器指令的转化,一般包括信号采集、特征提取和命令输出三个模块。从脑电信号采集的角度,一般将脑机接口分为侵入式和非侵入式两大类。除此之外,脑机接口还有其他常见的分类方式:按照信号传输方向可以分为脑到机、机到脑和脑机双向接口;按照信号生成的类型,可分为自发式脑机接口和诱发式脑机接口;按照信号源的不同还可分为基于脑电的脑机接口、基于功能性核磁共振的脑机接口以及基于近红外光谱分析的脑机接口。3.1.5 计算机视觉计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。(1)计算成像学计算成像学是探索人眼结构、相机成像原理以及其延伸应用的科学。在相机成像原理方面,计算成像学不断促进现有可见光相机的完善,使得现代相机更加轻便,可以适用于不同场景。同时计算成像学也推动着新型相机的产生,使相机超出可见光的限制。在相机应用科学方面,计算成像学可以提升相机的能力,从而通过后续的算法处理使得在受限条件下拍摄的图像更加完善,例如图像去噪、去模糊、暗光增强、去雾霾等,以及实现新的功能,例如全景图、软件虚化、超分辨率等。(2)图像理解图像理解是通过用计算机系统解释图像,实现类似人类视觉系统理解外部世界的一门科学。通常根据理解信息的抽象程度可分为三个层次:浅层理解,包括图像边缘、图像特征点、纹理元素等;中层理解,包括物体边界、区域与平面等; 高层理解,根据需要抽取的高层语义信息,可大致分为识别、检测、分割、姿态估计、图像文字说明等。目前高层图像理解算法已逐渐广泛应用于人工智能系统, 如刷脸支付、智慧安防、图像搜索等。(3)三维视觉三维视觉即研究如何通过视觉获取三维信息(三维重建)以及如何理解所获取的三维信息的科学。三维重建可以根据重建的信息来源,分为单目图像重建、多目图像重建和深度图像重建等。三维信息理解,即使用三维信息辅助图像理解或者直接理解三维信息。三维信息理解可分为,浅层:角点、边缘、法向量等; 中层:平面、立方体等;高层:物体检测、识别、分割等。三维视觉技术可以广泛应用于机器人、无人驾驶、智慧工厂、虚拟/增强现实等方向。(4)动态视觉动态视觉即分析视频或图像序列,模拟人处理时序图像的科学。通常动态视 觉问题可以定义为寻找图像元素,如像素、区域、物体在时序上的对应,以及提 取其语义信息的问题。动态视觉研究被广泛应用在视频分析以及人机交互等方面。(5)视频编解码视频编解码是指通过特定的压缩技术,将视频流进行压缩。视频流传输中最为重要的编解码标准有国际电联的 H.261、H.263、H.264、H.265、M-JPEG 和MPEG 系列标准。视频压缩编码主要分为两大类:无损压缩和有损压缩。无损压缩指使用压缩后的数据进行重构时,重构后的数据与原来的数据完全相同,例如磁盘文件的压缩。有损压缩也称为不可逆编码,指使用压缩后的数据进行重构时, 重构后的数据与原来的数据有差异,但不会影响人们对原始资料所表达的信息产生误解。有损压缩的应用范围广泛,例如视频会议、可视电话、视频广播、视频监控等。目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。3.1.6 Th物特征识别生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取, 然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。下面将对指纹识别、人脸识别、虹膜识别、指静脉识别、声纹识别以及步态识别等技术进行介绍。(1)指纹识别指纹识别过程通常包括数据采集、数据处理、分析判别三个过程。数据采集通过光、电、力、热等物理传感器获取指纹图像;数据处理包括预处理、畸变校正、特征提取三个过程;分析判别是对提取的特征进行分析判别的过程。(2)人脸识别人脸识别是典型的计算机视觉应用,从应用过程来看,可将人脸识别技术划分为检测定位、面部特征提取以及人脸确认三个过程。人脸识别技术的应用主要受到光照、拍摄角度、图像遮挡、年龄等多个因素的影响,在约束条件下人脸识别技术相对成熟,在自由条件下人脸识别技术还在不断改进。(3)虹膜识别虹膜识别的理论框架主要包括虹膜图像分割、虹膜区域归一化、特征提取和识别四个部分,研究工作大多是基于此理论框架发展而来。虹膜识别技术应用的主要难题包含传感器和光照影响两个方面:一方面,由于虹膜尺寸小且受黑色素遮挡,需在近红外光源下采用高分辨图像传感器才可清晰成像,对传感器质量和稳定性要求比较高;另一方面,光照的强弱变化会引起瞳孔缩放,导致虹膜纹理产生复杂形变,增加了匹配的难度。(4)指静脉识别指静脉识别是利用了人体静脉血管中的脱氧血红蛋白对特定波长范围内的近红外线有很好的吸收作用这一特性,采用近红外光对指静脉进行成像与识别的技术。由于指静脉血管分布随机性很强,其网络特征具有很好的唯一性,且属于人体内部特征,不受到外界影响,因此模态特性十分稳定。指静脉识别技术应用面临的主要难题来自于成像单元。(5)声纹识别声纹识别是指根据待识别语音的声纹特征识别说话人的技术。声纹识别技术通常可以分为前端处理和建模分析两个阶段。声纹识别的过程是将某段来自某个人的语音经过特征提取后与多复合声纹模型库中的声纹模型进行匹配,常用的识别方法可以分为模板匹配法、概率模型法等。(6)步态识别步态是远距离复杂场景下唯一可清晰成像的生物特征,步态识别是指通过身体体型和行走姿态来识别人的身份。相比上述几种生物特征识别,步态识别的技术难度更大,体现在其需要从视频中提取运动特征,以及需要更高要求的预处理算法,但步态识别具有远距离、跨角度、光照不敏感等优势。3.1.7 虚拟现实/增强现实虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势。3.1.8 人工智能技术发展趋势综上所述,人工智能技术在以下方面的发展有显著的特点,是进一步研究人工智能趋势的重点。(1)技术平台开源化开源的学习框架在人工智能领域的研发成绩斐然,对深度学习领域影响巨大。开源的深度学习框架使得开发者可以直接使用已经研发成功的深度学习工具,减 少二次开发,提高效率,促进业界紧密合作和交流。国内外产业巨头也纷纷意识 到通过开源技术建立产业生态,是抢占产业制高点的重要手段。通过技术平台的 开源化,可以扩大技术规模,整合技术和应用,有效布局人工智能全产业链。谷 歌、百度等国内外龙头企业纷纷布局开源人工智能生态,未来将有更多的软硬件 企业参与开源生态。(2)专用智能向通用智能发展目前的人工智能发展主要集中在专用智能方面,具有领域局限性。随着科技的发展,各领域之间相互融合、相互影响,需要一种范围广、集成度高、适应能力强的通用智能,提供从辅助性决策工具到专业性解决方案的升级。通用人工智能具备执行一般智慧行为的能力,可以将人工智能与感知、知识、意识和直觉等人类的特征互相连接,减少对领域知识的依赖性、提高处理任务的普适性,这将是人工智能未来的发展方向。未来的人工智能将广泛的涵盖各个领域,消除各领域之间的应用壁垒。(3)智能感知向智能认知方向迈进人工智能的主要发展阶段包括:运算智能、感知智能、认知智能,这一观点得到业界的广泛认可。早期阶段的人工智能是运算智能,机器具有快速计算和记忆存储能力。当前大数据时代的人工智能是感知智能,机器具有视觉、听觉、触觉等感知能力。随着类脑科技的发展,人工智能必然向认知智能时代迈进,即让机器能理解会思考。3.2 人工智能产业现状及趋势人工智能作为新一轮产业变革的核心驱动力,将催生新的技术、产品、产业、业态、模式,从而引发经济结构的重大变革,实现社会生产力的整体提升。麦肯锡预计,到 2025 年全球人工智能应用市场规模总值将达到 1270 亿美元,人工智能将是众多智能产业发展的突破点。通过对人工智能产业分布进行梳理,提出了人工智能产业生态图,主要分为核心业态、关联业态、衍生业态三个层次,如图 3 所示。图 3 人工智能产业生态图下面将重点对核心业态包含的智能基础设施建设、智能信息及数据、智能技术服务、智能产品四个方面展开介绍,并总结人工智能行业应用及产业发展趋势。3.2.1 智能基础设施智能基础设施为人工智能产业提供计算能力支撑,其范围包括智能传感器、智能芯片、分布式计算框架等,是人工智能产业发展的重要保障。(1)智能芯片智能芯片从应用角度可以分为训练和推理两种类型。从部署场景来看,可以分为云端和设备端两步大类。训练过程由于涉及海量的训练数据和复杂的深度神经网络结构,需要庞大的计算规模,主要使用智能芯片集群来完成。与训练的计算量相比,推理的计算量较少,但仍然涉及大量的矩阵运算。目前,训练和推理通常都在云端实现,只有对实时性要求很高的设备会交由设备端进行处理。按技术架构来看,智能芯片可以分为通用类芯片(CPU、GPU、FPGA)、基于FPGA 的半定制化芯片、全定制化 ASIC 芯片、类脑计算芯片(IBM TrueNorth)。另外,主要的人工智能处理器还有 DPU、BPU、NPU、EPU 等适用于不同场景和功能的人工智能芯片。随着互联网用户量和数据规模的急剧膨胀,人工智能发展对计算性能的要求迫切增长,对 CPU 计算性能提升的需求超过了摩尔定律的增长速度。同时,受限于技术原因,传统处理器性能也无法按照摩尔定律继续增长,发展下一代智能芯片势在必行。未来的智能芯片主要是在两个方向发展:一是模仿人类大脑结构的芯片,二是量子芯片。智能芯片是人工智能时代的战略制高点,预计到 2020 年人工智能芯片全球市场规模将突破百亿美元。(2)智能传感器智能传感器是具有信息处理功能的传感器。智能传感器带有微处理机,具备采集、处理、交换信息等功能,是传感器集成化与微处理机相结合的产物。智能传感器属于人工智能的神经末梢,用于全面感知外界环境。各类传感器的大规模部署和应用为实现人工智能创造了不可或缺的条件。不同应用场景,如智能安防、智能家居、智能医疗等对传感器应用提出了不同的要求。未来,随着人工智能应用领域的不断拓展,市场对传感器的需求将不断增多,2020 年市场规模有望突破 4600 亿美元。未来,高敏度、高精度、高可靠性、微型化、集成化将成为智能传感器发展的重要趋势。(3)分布式计算框架面对海量的数据处理、复杂的知识推理,常规的单机计算模式已经不能支撑。所以,计算模式必须将巨大的计算任务分成小的单机可以承受的计算任务,即云计算、边缘计算、大数据技术提供了基础的计算框架。目前流行的分布式计算框架如 OpenStack、Hadoop、Storm、Spark、Samza、Bigflow 等。各种开源深度学习框架也层出不穷,其中包括 TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4、Lasagne、Neon 等等。3.2.2 智能信息及数据信息数据是人工智能创造价值的关键要素之一。我国庞大的人口和产业基数带来了数据方面的天生优势。随着算法、算力技术水平的提升,围绕数据的采集、分析、处理产生了众多的企业。目前,在人工智能数据采集、分析、处理方面的企业主要有两种:一种是数据集提供商,以提供数据为自身主要业务,为需求方提供机器学习等技术所需要的不同领域的数据集;另一种是数据采集、分析、处理综合性厂商,自身拥有获取数据的途径,并对采集到的数据进行分析处理,最终将处理后的结果提供给需求方进行使用。对于一些大型企业,企业本身也是数据分析处理结果的需求方。3.2.3 智能技术服务智能技术服务主要关注如何构建人工智能的技术平台,并对外提供人工智能相关的服务。此类厂商在人工智能产业链中处于关键位置,依托基础设施和大量的数据,为各类人工智能的应用提供关键性的技术平台、解决方案和服务。目前, 从提供服务的类型来看,提供技术服务厂商包括以下几类:(1)提供人工智能的技术平台和算法模型。此类厂商主要针对用户或者行业需求,提供人工智能技术平台以及算法模型。用户可以在人工智能平台之上, 通过一系列的算法模型来进行人工智能的应用开发。此类厂商主要关注人工智能的通用计算框架、算法模型、通用技术等关键领域。(2)提供人工智能的整体解决方案。此类厂商主要针对用户或者行业需求, 设计和提供包括软、硬件一体的行业人工智能解决方案,整体方案中集成多种人工智能算法模型以及软、硬件环境,帮助用户或行业解决特定的问题。此类厂商重点关注人工智能在特定领域或者特定行业的应用。(3)提供人工智能在线服务。此类厂商一般为传统的云服务提供厂商,主要依托其已有的云计算和大数据应用的用户资源,聚集用户的需求和行业属性, 为客户提供多类型的人工智能服务;从各类模型算法和计算框架的 API 等特定应用平台到特定行业的整体解决方案等,进一步吸引大量的用户使用,从而进一步完善其提供的人工智能服务。此类厂商主要提供相对通用的人工智能服务,同时也会关注一些重点行业和领域。需要指出的是,上述三类角色并不是严格区分开的,很多情况下会出现重叠, 随着技术的发展成熟,在人工智能产业链中已有大量的厂商同时具备上述两类或者三类角色的特征。3.2.4 智能产品智能产品是指将人工智能领域的技术成果集成化、产品化,具体的分类如表1 所示。表 1 人工智能的产品分类典型产品示例智能机器人工业机器人焊接机器人、喷涂机器人、搬运机器人、加工机器人、装配机器人、清洁机器人以及其它工业机器人个人/家用服务机器人家政服务机器人、教育娱乐服务机器人、养老助残服务机器人、个人运输服务机器人、安防监控服务机器人公共服务机器人酒店服务机器人、银行服务机器人、场馆服务机器人和餐饮服务机器人特种机器人特种极限机器人、康复辅助机器人、农业(包括农林牧副渔)机器人、水下机器人、军用和警用机器人、电力机器人、石油化工机器人、矿业机器人、建筑机器人、物流机器人、安防机器人、清洁机器人、医疗服务机器人及其它非结构和非家用机器人智能运载工具自动驾驶汽车轨道交通系统无人机无人直升机、固定翼机、多旋翼飞行器、无人飞艇、无人伞翼机无人船智能终端智能手机车载智能终端可穿戴终端智能手表、智能耳机、智能眼镜自然语言处理机器翻译机器阅读理解问答系统智能搜索计算机视觉图像分析仪、视频监控系统生物特征识别指纹识别系统人脸识别系统虹膜识别系统指静脉识别系统DNA、步态、掌纹、声纹等其它生物特征识别系统VR/ARPC 端 VR、一体机 VR、移动端头显人机交互语音交互个人助理语音助手智能客服情感交互体感交互脑机交互随着制造强国、网络强国、数字中国建设进程的加快,在制造、家居、金融、教育、交通、安防、医疗、物流等领域对人工智能技术和产品的需求将进一步释放,相关智能产品的种类和形态也将越来越丰富。3.2.5 人工智能行业应用人工智能与行业领域的深度融合将改变甚至重新塑造传统行业,本节重点介绍人工智能在制造、家居、金融、交通、安防、医疗、物流行业的应用,由于篇幅有限,其它很多重要的行业应用在这里不展开论述。(1)智能制造智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执 行、自适应等功能的新型生产方式。智能制造对人工智能的需求主要表现在以下 三个方面:一是智能装备,包括自动识别设备、人机交互系统、工业机器人以及 数控机床等具体设备,涉及到跨媒体分析推理、自然语言处理、虚拟现实智能建 模及自主无人系统等关键技术。二是智能工厂,包括智能设计、智能生产、智能 管理以及集成优化等具体内容,涉及到跨媒体分析推理、大数据智能、机器学习 等关键技术。三是智能服务,包括大规模个性化定制、远程运维以及预测性维护 等具体服务模式,涉及到跨媒体分析推理、自然语言处理、大数据智能、高级机 器学习等关键技术。例如,现有涉及智能装备故障问题的纸质化文件,可通过自 然语言处理,形成数字化资料,再通过非结构化数据向结构化数据的转换,形成 深度学习所需的训练数据,从而构建设备故障分析的神经网络,为下一步故障诊 断、优化参数设置提供决策依据。(2)智能家居参照工业和信息化部印发的《智慧家庭综合标准化体系建设指南》,智能家居是智慧家庭八大应用场景之一。受产业环境、价格、消费者认可度等因素影响, 我国智能家居行业经历了漫长的探索期。至 2010 年,随着物联网技术的发展以及智慧城市概念的出现,智能家居概念逐步有了清晰的定义并随之涌现出各类产品,软件系统也经历了若干轮升级。智能家居以住宅为平台,基于物联网技术,由硬件(智能家电、智能硬件、安防控制设备、家具等)、软件系统、云计算平台构成的家居生态圈,实现人远程控制设备、设备间互联互通、设备自我学习等功能,并通过收集、分析用户行为数据为用户提供个性
展开阅读全文
  语墨文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:人工智能标准化白皮书(2018年度版~).doc
链接地址:http://www.wenku38.com/p-121012.html

                                            站长QQ:1002732220      手机号:18710392703    


                                                          copyright@ 2008-2020 语墨网站版权所有

                                                             经营许可证编号:蜀ICP备18034126号

网站客服微信
收起
展开