• / 57
  • 下载费用:10 金币  

[资料]查锡良《生物化学》复习精要.doc

关 键 词:
资料 生物化学 查锡良 复习 精要
资源描述:
第一章一、 蛋白质的生理功能蛋白质是生物体的基本组成成分之一,约占人体固体成分的45%左右。蛋白质在生物体内分布广泛,几乎存在于所有的组织器官中。蛋白质是一切生命活动的物质基础,是各种生命功能的直接执行者,在物质运输与代谢、机体防御、肌肉收缩、信号传递、个体发育、组织生长与修复等方面发挥着不可替代的作用。二、 蛋白质的分子组成特点蛋白质的基本组成单位是氨基酸² 编码氨基酸:自然界存在的氨基酸有300余种,构成人体蛋白质的氨基酸只有20种,且具有自己的遗传密码。² 各种蛋白质的含氮量很接近,平均为16%。² 每100mg样品中蛋白质含量(mg%):每克样品含氮质量(mg)×6.25×100。氨基酸的分类² 所有的氨基酸均为L型氨基酸(甘氨酸)除外。² 根据侧链基团的结构和理化性质,20种氨基酸分为四类。1. 非极性疏水性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、苯丙氨酸(Phe)、脯氨酸(Pro)。2. 极性中性氨基酸:色氨酸(Trp)、丝氨酸(Ser)、酪氨酸(Tyr)、半胱氨酸(Cys)、蛋氨酸(Met)、天冬酰胺(Asn)、谷胺酰胺(gln)、苏氨酸(Thr)。3. 酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu)。4. 碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)。² 含有硫原子的氨基酸:蛋氨酸(又称为甲硫氨酸)、半胱氨酸(含有由硫原子构成的巯基-SH)、胱氨酸(由两个半胱氨酸通过二硫键连接而成)。² 芳香族氨基酸:色氨酸、酪氨酸、苯丙氨酸。² 唯一的亚氨基酸:脯氨酸,其存在影响α-螺旋的形成。² 营养必需氨基酸:八种,即异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸、苏氨酸、赖氨酸。可用一句话概括为“一家写两三本书来”,与之谐音。氨基酸的理化性质² 氨基酸的两性解离性质:所有的氨基酸都含有能与质子结合成NH4+的氨基;含有能与羟基结合成为COO-的羧基,因此,在水溶液中,它具有两性解离的特性。在某一pH环境溶液中,氨基酸解离生成的阳郭子及阴离子的趋势相同,成为兼性离子。此时环境的pH值称为该氨基酸的等电点(pI),氨基酸带有的净电荷为零,在电场中不泳动。pI值的计算如下:pI=1/2(pK1 + pK2),(pK1和pK2分别为α-羧基和α-氨基的解离常数的负对数值)。² 氨基酸的紫外吸收性质ü 吸收波长:280nmü 结构特点:分子中含有共轭双键ü 光谱吸收能力:色氨酸>酪氨酸>苯丙氨酸² 呈色反应:氨基酸与茚三酮水合物共加热,生成的蓝紫色化合物在570nm波长处有最大吸收峰;蓝紫色化合物=(氨基酸加热分解的氨)+(茚三酮的还原产物)+(一分子茚三酮)。肽的相关概念² 寡 肽:小于10分子氨基酸组成的肽链。² 多 肽:大于10分子氨基酸组成的肽链。² 氨基酸残基:肽链中因脱水缩合而基团不全的氨基酸分子。² 肽 键:连接两个氨基酸分子的酰胺键。² 肽单元:参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,组成肽单元。三、 蛋白质分子结构特点见表1-1。表1-1 蛋白质分子结构的比较一级结构二级结构三级结构四级结构定 义指蛋白质分子中氨基酸的排列顺序蛋白质主链的局部空间结构、不涉及氨基酸残基侧链构象整条肽链中所有原子在三维空间的排布位置各亚基间的空间排布表现形式-α-螺旋、β-折叠(片层)、β-转角、无规卷曲结构域、模 体(锌指结构)亚基聚合维系键肽 键(主要)二硫键(次要)氢 键次级键(疏水作用、盐键、氢键、范德华力)亚基间的次级键特 殊-脯氨酸的存在或者多个谷、天冬氨酸的存在都会干扰α-螺旋的形成--² 模 体:蛋白质分子中,由两个以上具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象并发挥特定的作用。² 锌指结构:是一个典型的模体,由一个α-螺旋和二个反平衡的β-折叠的3个肽段组成,具有结合锌离子的功能。² 分子伴侣:能够可逆地与未折叠肽段的疏水部分结合随后松开,引导肽链正确折叠的存在于细胞内的一类蛋白质,也对蛋白质二硫键正确形成起到重要作用。四、 蛋白质一级结构与空间结构的关系² 一级结构是空间构象的基础,具有相似一级结构的多肽或蛋白质,其空间构象及功能也相似。² 分子病:由于蛋白质分子一级结构发生改变,导致其功能改变而产生的疾病。五、 蛋白质空间结构与功能的关系² 蛋白质空间结构由一级结构决定,其空间结构与功能密切相关。² 血红蛋白(Hb)由四个亚基组成,两个α亚基,两个β亚基。记忆要点如下:ü 血红蛋白分子存着紧张态(T)和松弛态(R)两种不同的空间构象。ü T型和氧分子亲和力低,R型与氧分子的亲和力强,四个亚基与氧分子结合的能力不一样。ü 第一个亚基与氧分子结合后,使Hb分子空间构象发生变化,引起后一个亚基与氧分子结合能力加强(正协同效应)。ü 肌红蛋白分子只有一个亚基,不存在变构效应² 协同效应:指一个亚基与其配体结合后,能影响此寡聚体中的另一个亚基与配体的结合能力。促进作用则为正协同效应;反之为负协同效应。² 变构效应:蛋白质分子的亚基与配体结合后,引起蛋白质的构象发生变化的现象。² 结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。² 疯牛病:是由朊病毒蛋白引起的一组人和动物神经退行性病变,具有传染性、遗传性或散在发病的特点。生物体内含有正常的α-螺旋形式的PrPc,转变为异常的β-折叠形式的PrPSc具有致病性。六、 蛋白质重要的理化性质及相关概念² 蛋白质的等电点:当蛋白质在某一pH溶液中时,蛋白质解离成正、负离子的趋势相等,成为兼性离子,带有的净电荷为零,此时溶液的pH值称为蛋白质的等电点。ü 体内的蛋白质等电点各不相同,大多数接近于pH5.0ü 碱性蛋白质:鱼精蛋白、组蛋白酸性蛋白质:胃蛋白酶、丝蛋白ü 蛋白质处于大于其等电点的pH值溶液中时,蛋白质颗粒带负电荷。反之则带有正电荷。² 蛋白质胶体溶液稳定的两个因素:水化膜、表面电荷。² 蛋白质的变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,导致理化性质的改变和生物活性的丧失。ü 变性的本质:二硫键与非共价键的破坏,不涉及肽键的断裂ü 变性后特点:生物学活性丧失、溶解度下降、粘度增加、结晶能力消失、易被蛋白酶水解ü 变性的因素:加热、乙醇、强酸、强碱、重金属离子及生物碱试剂等ü 蛋白质复性:变性程度较轻,去除变性因素后,仍可恢复或部分恢复其原有的构象和功能ü 蛋白质的凝固作用:蛋白质经强酸或强碱变性后,仍能溶解于该溶液中。若调节pH值至其等电点时,变性蛋白质呈絮状析出,再加热,形成坚固的凝块。² 蛋白质的复性:若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能,称为复性。² 蛋白质的紫外吸收:含有具有共轭双键的三种芳香族氨基酸,于280nm波长处有特征吸收峰。² 蛋白质的呈色反应:ü 茚三酮反应:蛋白质水解后可产生游离的氨基酸,原理同前ü 双缩脲反应:肽键与碱性硫酸铜共热,呈现紫色或红色。氨基酸不出现此反应,当蛋白质不断水解时,氨基酸浓度上升,其双缩脲呈色浓度逐渐下降,因此可以检测蛋白质的水解程度。七、 蛋白质的分离纯化² 透 析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。² 超滤法:应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜的方法。² 丙酮沉淀:0-4℃低温;丙酮的体积10倍于被沉淀蛋白质;蛋白质沉淀后应迅速分离。² 盐 析:硫酸铵、硫酸钠或氯化钠等中性盐放入蛋白质溶液中,破坏水化膜并中和表面电荷,导致蛋白质胶体的稳定因素去除而沉淀。² 免疫沉淀法:利用特异抗体识别相应的抗原蛋白,形成抗原抗体复合物,从蛋白质混合溶液中分离获得抗原蛋白的方法。² 电 泳:蛋白质在高于或低于其等电点的溶液中,受到电场力的作用向正极或负极泳动。ü SDS-PAGE电泳:加入负电荷较多的SDS(十二烷基磺酸钠),导致蛋白质分子间的电荷差异消失,此时蛋白质在电场中的泳动速率只和蛋白质颗粒大小有关,用于蛋白质分子量的测定。ü 等电聚焦电泳:在电场中形成一个连续而稳定的线性pH梯度,电泳时被分离的蛋白质泳动至其等电点相等的pH值区域时,净电荷为零不再受电场力移动,该法用于根据蛋白质等电点的差异进行分离。² 层 析:待分离蛋白质溶液(流动相)经过一个固态物质(固定相)时,根据溶液中待分离的蛋白质颗粒大小、电荷多少及亲和力等,使待分离的蛋白质在两相中反复分配,并以不同速度流经固定相而达到分离蛋白质的目的。ü 阴离子交换层析:负电量小的蛋白质首先被洗脱ü 凝胶过滤:分子量大的蛋白质最先洗脱² 超速离心:既可分离纯化蛋白质也可测定蛋白质的分子量;ü 对于球形蛋白质而言,沉降系数S大体上和分子量成正比关系ü S(未知)/S(标准)={Mr(未知)/Mr(标准)}2/3八、 多肽链氨基酸序列分析方法及关键试剂名称氨基酸序列分析² 步骤一:分析已纯化蛋白质的氨基酸组成² 步骤二:测定多肽链的氨基末端与羧基末端为何种氨基酸。以前用二硝基氟苯,现多用丹酰氯² 步骤三:将肽链水解成片段(表1-2)。表1-2 三种肽链水解方式的比较胰蛋白酶胰凝乳蛋白质酶溴化氢法作用部位赖氨酸或精氨酸羧基侧的肽键芳香族氨基羧基侧的肽键甲硫氨酸羧基侧的肽键² 步骤四:测定各肽段的氨基酸排列顺序,采用Edman降解法,试剂为异硫氰酸苯酯² 步骤五:统计学分析,组合排列对比,得到完整肽链氨基酸排列顺序通过核酸来推演蛋白质中的氨基酸序列的步骤:² 步骤一:分离编码蛋白质的基因² 步骤二:测定DNA序列 ² 步骤三:排列出mRNA序列² 步骤四:按照三联密码的原则推演出氨基酸的序列蛋白质空间结构测定蛋白质二级结构含量测定:圆二色光谱法,测α-螺旋较多的蛋白质时,结果较为准确。蛋白质三维空间结构测定:X射线衍射法和磁共振技术。第二章一、 核酸的分类、细胞分布、核酸元素组成特点及碱基、核苷、核苷酸的化学结构² 核酸是生物遗传的物质基础,是一切生物体所含有的最重要的生物大分子之一。天然存在的核酸根据其分子的物质组成不同分为两大类:DNA与RNA。² 核酸的元素组成:主要由碳、氢、氧、氮、磷组成,磷的含量较为稳定,占核酸总量的9-10%。² 基本组成:核酸的基本组成是核苷酸。磷 酸磷 酸核苷酸核 糖碱 基核酸分子核 苷二、三、 核苷酸间的连接方式3’,5’-磷酸二酯键;5’末端是指在DNA或RNA链中末端为5’-磷酸基,未形成磷酸二酯键的一端;3’末端是指在DNA或RNA链中末端为3’-OH,未被酯化的一端;各种简化式书写时都是5’→3’,其读向都是从左到右,所表示的碱基序列也都是从5’端到3’端。四、 两类核酸(DNA与RNA)性质的异同详见表2-1。表2-1 DNA与RNA性质的比较DNA RNA 名称脱氧核糖核苷酸核糖核苷酸碱基组成A、T、C、GA、U、C、G戊糖组成β-D-2-脱氧核糖β-D-核糖类型DNAmRNA、tRNA、rRNA等核苷酸/脱氧核苷酸dATP、dTTP、dCTP、dGTPATP、UTP、CTP、GTP分布部位98%在细胞核中2%在线粒体中90%分布于胞液10%分布于细胞核基本结构反向平行互补双螺旋单链无规卷曲与蛋白质的结合主要与组蛋白结合rRNA与核蛋白体结合稀有碱基不含有tRNA含有10-20%的稀有碱基主要生物学功能储存遗传信息传递及表达遗传信息理化性质多元酸、线性高分子、粘度大易在机械力作用下断裂分子小,粘度小纯品时OD260/OD2801.82.0连接键3’,5’-磷酸二酯键光波最大吸收值260nm附近五、 DNA的一级结构、二级结构要点及碱基配对规律,了解DNA的高级结构形式详见表2-2。表2-2 DNA分子结构的比较DNA一级结构DNA二级结构DNA高级结构定义 核苷酸的排列顺序DNA的双螺旋结构在双螺旋结构的基础上,进一步折叠,在蛋白质的参与下组装成为的致密结构结构特点碱基的排列顺序3’,5’-磷酸二酯键反向、平行、互补、双链右手螺旋结构DNA结构的多样性核小体、核小体卷曲及柱状结构折叠等形成超螺旋形式稳定性的维系磷酸二酯键纵向:碱基的堆积力横向:配对的氢键-六、 mRNA、tRNA二级结构特点及rRNA的类型和其它小分子RNAmRNA、tRNA、rRNA结构特点见表2-3。其它小分子RNA种类及功能见表2-4。表2-3 三种常见RNA的比较mRNAtRNArRNA名称信使RNA转运RNA核糖体RNA主要功能蛋白质合成的直接模板氨基酸的运载载体核蛋白体的组成成分蛋白质合成的场所比例约占总RNA的5%约占总RNA的10%-15%最多,占总RNA的75%-80%二级结构单 链二级结构:三叶草形三级结构:倒L型花 状结构特点5’端带有m7GpppN帽结构3’端带有polyA尾结构中间是遗传信息编码区从5’至3’端分别是DHU环、反密码子环、Tψ环,至3’端为CCA-OH原核真核大亚基23S、5S28S、5S小亚基16S18S分布胞 核胞 质胞 质表2-4 其它小分子RNA种类及功能名  称功     能 hnRNA核内不均一RNA成熟mRNA的前体 snRNA核内小RNA参与hnRNA的剪接、转运 snoRNA核仁小RNArRNA的加工与修饰 scRNA/7SL-RNA胞质小RNA蛋白质内质网定位合成的信号识别体组成成分七、 DNA(热)变性、复性及分子杂交的概念。² DNA变性:在某些理化因素(温度、pH、离子强度)作用下,DNA双链的互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,成为单链的现象。ü DNA变性只改变其二级结构,不改变核苷酸排列顺序。ü DNA的增色效应:DNA变性过程中,在紫外区260nm处的OD值增加,并与解链程度有一定比例的关系。ü DNA解链温度:DNA的变性从开始解链到完全解链,在一个相当窄的温度范围内进行,期间紫外光吸收值达到最大值50%的温度称为解链温度,又称融解温度(Tm)。ü Tm值高低与其分子所含碱基中的GC含量相关,GC含量越高,Tm值越大。² DNA复性:变性DNA在适当条件下,两条互补链可重新配对,恢复天然的双螺旋构象。ü 退火:热变性的DNA经缓慢冷却后复性的过程。² 分子杂交:DNA变性后的复性过程中,如果将不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件下,就可以在不同的分子间形成杂化双链的现象。八、 核酸酶的概念及性质² 核酸酶:所有可以水解核酸的酶,根据酶解底物的不同分为DNA酶和RNA酶。² 核酸内切酶:可以在DNA或RNA分子内部切断磷酸二酯键的酶。² 核酸外切酶:仅能水解位于核酸分子链末端核苷酸的酶。根据其作用的方向性,分为5’→ 3’或3’→5’核酸外切酶。² 核 酶:具有催化功能的RNA分子,底物是核酸,属于序列特异性的核酸内切酶。² 催化性DNA:人工合成的具有序列特异性降解RNA功能的寡聚脱氧核苷酸片段。第三章一、 酶及生物催化剂的基本概念;酶的分子组成及相关概念如酶蛋白、辅助因子(辅酶、辅基)、全酶、酶的活性中心和必需基团等 见表3-1。表3-1 酶及酶的相关概念概 念说 明酶由活细胞合成,对其特异性底物起高效催化作用的蛋白质。是机体内催化各种代谢反应最主要的催化剂。――生物催化剂包括酶及核酶两个概念。核酶是具有高效、特异催化作用的核酸,是近年来发现的一类新的生物催化剂,主要是参与RNA的剪接。酶及核酶两个概念都要提及。单体酶仅具有三级结构的酶――寡聚酶由多个相同或不同亚基以非共价键连接组成的酶――多酶体系由几种不同功能的酶彼此聚合形成的多酶复合物丙酮酸脱氢酶复合体多功能酶一些多酶体系在进化过程中由于基因的整合,多种不同催化功能存在于一条多肽链中嘧啶核苷酸从头合成的酶单纯酶仅由肽链构成的酶脲酶、淀粉酶、脂酶等结合酶由酶蛋白和辅助因子组成的酶酶蛋白和辅助因子结合形成的复合物称为全酶只有全酶才有催化作用辅助因子辅酶与酶蛋白结合疏松的辅助因子,可用透析或超滤方法去除――辅基与酶蛋白结合紧密的辅助因子,不能用透析或超滤方法去除金属离子多为酶的辅基金属酶金属离子作为辅助因子,且与酶结合紧密,提取过程中不易丢失羧基肽酶、黄嘌呤氧化酶金属激活酶金属离子作为辅助因子,但与酶结合疏松已糖激酶、肌酸激酶酶的必需基团酶分子中与酶活性密切相关的化学基团――酶的活性中心必需基团组成具有特定空间结构的区域,能与底物结构并将底物转化为产物的区域,包含结合基团和催化基团――单纯酶与结合酶的活性中心² 对单纯酶来说,活性中心就是酶分子在三维结构上比较接近的少数几个氨基酸残基,但通过肽链的盘绕、折叠而在空间构象上相互靠近;活性中心的常见必需基团:His残基的咪唑基、Ser残基的羟基、Cys残基的巯基及Glu残基的γ -羧基。² 对结合酶来说,辅酶分子或辅酶分子上的某一部分结构往往就是活性中心的组成部分。金属离子的作用² 作为酶活性中心的催化基团参与催化反应、传递电子;² 作为连接底物与酶的桥梁,便于酶对底物起作用;² 维持酶蛋白构象;² 中和阴离子,降低反应中的静电斥力。维生素在酶促反应中的作用详见表3-2。表3-2 常见酶促反应中维生素的作用维生素学名辅酶形式酶促反应中的作用B1硫胺素TPP丙酮酸脱氢酶, α-酮戊二酸脱羧酶及转酮醇酶的辅酶B2核黄素FAD、 FMN多种氧化还原酶及递氢体的酶辅基参与递氢作用PP尼克酸NAD、NADP脱氢酶的辅酶B6吡哆醛磷酸吡哆醛氨基酸脱羧酶、转氨酶等的辅酶B12钴胺素钴胺素烷基转移的辅酶泛酸遍多酸辅酶A、ACP多种酰基转移反应的辅酶H生物素羧化酶辅酶羧化酶的辅酶,参与CO2的固定叶酸叶酸FH4各种—碳基团转移的活性载体C抗坏血酸抗坏血酸胶原中脯氨酰羟化酶、多巴胺b羟化酶等作用时提供还原物二、 酶促反应的特点与酶促反应机制的学说酶促反应的特点² 酶促反应具有极高的效率:降低反应的活化能,但不改变反应的平衡点。² 酶促反应具有高度的特异性:ü 绝对的特异性:仅作用于特定结构的底物,进行一种专一的反应,生成一种特定的产物。如脲酶和琥珀酸脱氢酶。ü 相对的特异性:作用于一类化合物或一种化学键。如脂肪酶、磷酸酶、蛋白酶等。ü 立体异构特异性:仅作用于底物的一种立体异构体,如乳酸脱氢酶催化L-乳酸;延胡索酸酶催化反式丁烯二酸与苹果酸间的裂解。² 酶促反应的可调节性:⑴酶量调节; ⑵酶催化效率调节; ⑶改变底物浓度进行调节。² 酶促反应的高效不稳定性:由于酶的本质是蛋白质,易受理化因素的影响。酶促反应机制的诱导契合假说² 酶与底物接近时二者相互诱导、相互形变、相互适应。酶促反应的机制很复杂,在酶的活性中心内底物可发生邻近效应和定向排列,酶对底物可进行酸碱多元催化在,底物在酶活性中心的疏水性‘口袋’里发生表面效应。三、 影响酶促反应动力学的几种因素及其动力学特点影响酶促反应速度的因素见表3-3。表3-3 影响酶促反应速度的因素影响因素特  征说  明底物浓度符合米-曼氏方程V=(Vmax[S])/(Km+[S])呈矩形双曲线酶浓度V与酶浓度呈正比在底物浓度足够大的情况下PH值有最适pH值,达到最大反应速度不是酶的特征性常数温度有最适温度,达到最大反应速度不是酶的特征性常数抑制剂引起酶催化活性下降但不引起酶蛋白变性的物质分不可逆性抑制与可逆性抑制激活剂使酶从无活性到有活性或使酶活性增加的物质大多为金属离子底物浓度对酶促反应速度的影响² Km值的含义:为酶促反应速度为最大速度一半时的底物浓度ü Km值是酶的特征性常数之一,只与酶的结构、底物和反应环境有关,与酶的浓度无关ü Km值可用来表示酶与底物的亲和力。Km值越小,酶与底物的亲和力越大,表示不需要很高的底物浓度就可容易达到最大反应速度。反之亦然。² Vmax是酶完全被底物饱和时的反应速度,与酶浓度呈正比² Km与Vmax的测定:双倒数作图得到林贝氏方程:自变量是1/[S],应变量是1/V,斜率是Km/Vmax,在y轴的截距是1/Vmax(图3-1)酶浓度的影响 图3-1 斜率² 当[S]>>[E]时,酶促反应速度与[E]成正比 pH值的影响² 在某一pH值,酶催化活性最大,称为最适pH值。² 最适pH值不是酶的特征性常数,大多数接近中性。少数例外(如胃蛋白酶,最适pH值为1.8;肝精氨酸酶最适pH值为9.8)。抑制剂的影响² 酶的抑制剂:引起酶催化活性下降但不引起酶蛋白变性的物质。表3-4 两种抑制性作用的比较不可逆性抑制可逆性抑制结合方式共价键非共价键抑制剂的作用部位活性中心上的必需基团如有机磷农药:丝氨酸上的羟基重金属离子和砷化合物:巯基S、ES、E能否通过透析或超滤去除否可以举例有机磷农药、重金属离子磺胺类等² 三种可逆性抑制的比较详见表3-5。表3-5 三种可逆性抑制作用的比较作用特征无抑制剂竞争性抑制非竞争性抑制反竞争性抑制与I结合的组分――EE、ESES动力学参数表观KmKm增大不变减小VmaxVmax不变减小减小林-贝氏作图斜率Km /Vmax增大增大不变X轴截距-1/ Km增大不变减小Y轴截距1/Vmax不变增大增大激活剂的影响² 激活剂:使酶从无活性到有活性或使活性增加的物质。ü 大多数为金属离子,如Mg2+、K+;有机化合物:如胆汁酸盐。ü 必需激活剂:为酶促反应所必需,否则检测不到酶的活性。例Mg2+于已糖激酶。ü 非必需激活剂:激活剂不存在时,仍能检测到一定的活性,例Cl-于唾液淀粉酶。四、 酶原与酶原的激活² 酶 原:无活性酶的前体。例消化酶原、凝血酶原等。² 酶原的激活:酶原向酶的转化过程。实质是酶活性中心的形成或暴露过程。² 生理意义:⑴保护自身不被酶破坏;⑵保证酶在特定的部位与环境发挥作用;⑶酶的贮存形式。五、 酶的快速调节与慢速调节的方式快速调节包括变构调节与共价修饰调节² 变构酶:指效应剂与酶的非催化部位可逆的结合,使酶发生构象的变化而影响酶的活性,其作用特点如下:ü 反应的方程曲线为S型曲线,非米氏方程的矩形双曲线。ü 变构酶多为代谢途径的关键酶,催化的常为不可逆反应。ü 变构酶常由多个亚基组成,彼此间具有协同效应。ü 变构酶有催化部位和调节部位(而不是都具有催化亚基和调节亚基)。ü 变构调节是快速调节。² 共价修饰:酶蛋白上的一些基团与某种化学基团发生可逆的共价结合,从而改变酶的活性。ü 常见的共价修饰包括:磷酸化与去磷酸化、乙酰化与去乙酰化、甲基化与去甲基化、腺苷化与去腺苷化和-SH与-S-S-的互变等。ü 磷酸化与去磷酸化最为常见。ü 共价修饰是快速调节。² 酶含量的调节:通过改变酶合成或降解以调节细胞内酶的含量,属于慢速调节。同工酶概念及应用² 同工酶:是指催化的化学反应相同,酶蛋白的分子结构、理化性质及至免疫学性质不同的一组酶。由不同基因或等位基因编码的多肽链,或由同一基因转录生成的不同mRNA翻译的不同多肽链组成的蛋白质。ü 乳酸脱氢酶有五种类型,其中LDH1型在心肌细胞中最多;肝病时LDH5升高ü 肌酸激酶(CK)有三型:脑中含CK1(BB型);心肌含CK2(MB型);骨骼肌含CK3(MM型)六、 酶的命名与分类原则酶均有两个名称,系统名称应标明酶的所有底物与反应性质。推荐名称是从习惯名称中挑选而来,可分为六类:⑴氧化还原酶类;⑵转移酶类;⑶水解酶类;⑷裂合酶类;⑸异构酶类; ⑹合成酶类。七、 酶在医学中的应用酶与疾病的关系密切。遗传性因素和许多疾病均可引起酶的质与量的异常以及活性的改变,并引发多种疾病。检验血液中酶活性的改变可以帮助诊断某些疾病。许多药物可通过改变人体或致病菌中酶的活性从而达到治疗目的。此外,酶还可以作为工具用于临床检验和科学研究。第四章一、 糖的主要生理功能² 提供能量是糖最主要的生理功能。² 糖还是机体重要的碳源,糖代谢的中间产物可转变成其他的含碳化合物。² 糖也是组成人体组织结构的重要成分,例糖蛋白、糖脂。² 糖的磷酸衍生物形成生物活性物质,例NAD+、FAD、DNA、RNA、ATP等。二、 糖无氧氧化的基本反应过程、能量生成、关键酶调节及生理意义糖的无氧氧化:又称糖酵解,葡萄糖在缺氧或供氧不足情况下,生成乳酸的过程。² 基本反应过程:分为两个反应阶段,全程在胞浆中进行第一阶段:糖酵解途径,由一分子葡萄糖分解分成两分子丙酮酸的过程记忆要点:反应的“一、二、三”。⑴ 一次脱氢:3-磷酸甘油醛→1,3-二磷酸甘油酸 + NADH+H+的氧化过程。⑵ 二次底物水平磷酸化过程:各生成1分子ATP1,3-二磷酸甘油酸→3-磷酸甘油酸 + ATP磷酸烯醇式丙酮酸→丙酮酸 + ATP 二次ATP消耗的反应:葡萄糖 + ATP → 6-磷酸葡萄糖6-磷酸果糖 + ATP  → 1,6-二磷酸果糖 二个磷酸丙糖的生成:1,6-二磷酸果糖裂解为磷酸二羟丙酮和3-磷酸甘油醛 二个ATP的净生成:2(底物水平磷酸化)×2(磷酸丙糖)-2(ATP消耗)⑶ 三次不可逆性反应,三个关键酶的参与已糖激酶 催化 葡萄糖 → 6-磷酸葡萄糖6-磷酸果糖激酶-1 催化 6-磷酸果糖 → 1,6-二磷酸果糖丙酮酸激酶 催化 磷酸烯醇式丙酮酸 → 丙酮酸第二阶段:丙酮酸还原生成乳酸,所需的氢原子由前述‘一次脱氢’过程提供,反应由乳酸脱氢酶催化,辅酶是NAD+。² 糖酵解的调节:主要在三个关键酶上的调节(见表4-1)。表4-1 糖酵解关键酶的调节激活剂抑制剂附 注6-磷酸果糖激酶-1AMP、ADP1,6-二磷酸果糖2,6-二磷酸果糖ATP、柠檬酸Ø 1,6-二磷酸果糖是该酶的正反馈激活剂Ø 2,6-二磷酸果糖是该酶最强的变构激活剂丙酮酸激酶1,6-二磷酸果糖ATP、丙氨酸――已糖激酶――6-磷酸葡萄糖长链脂酰CoA有四种同工酶,肝细胞中的Ⅳ型,称为葡萄糖激酶² 糖酵解的生理意义ü 迅速提供能量,对肌收缩更为重要。ü 成熟红细胞的供能。ü 神经组织、白细胞、骨髓等代谢活跃的组织,即使不缺氧也多由糖酵解提供能量。三、 糖有氧氧化的基本反应过程、能量生成、关键酶调节及生理意义糖有氧氧化的定义:葡萄糖在有氧条件下彻底氧化生成水和二氧化碳的过程。基本反应过程:分为三个反应阶段² 第一阶段:糖酵解途径生成丙酮酸,同前述糖酵解过程² 第二阶段:丙酮酸进入线粒体后,氧化脱羧生成乙酰CoAü 总反应式为:丙酮酸 + NAD+ + 辅酶A → 乙酰CoA + NADH+H+ + CO2ü 反应不可逆,由丙酮酸脱氢酶复合体催化ü 参与反应的辅酶有:硫胺素焦磷酸酯(TPP)、硫辛酸、FAD、NAD+、CoA² 第三阶段:三羧酸循环及氧化磷酸化,生成大量的ATP和水记忆要点:反应有“一、二、三、四”。⑴ 一次底物水平磷酸化反应ü 琥珀酰CoA  →  琥珀酸 + GTP⑵ 二次脱羧基反应(同时伴随有脱氢反应)ü 异柠檬酸  → α-酮戊二酸 + CO2 + NADH+H+ü α-酮戊二酸  →  琥珀酰CoA + CO2 + NADH+H+⑶ 三次关键酶的催化ü 柠檬酸合成酶 催化 草酰乙酸 + 乙酰CoA  →  柠檬酸ü 异柠檬酸脱氢酶 催化 异柠檬酸 → α-酮戊二酸 + CO2 + NADH+H+ü α-酮戊二酸脱氢酶 催化 α-酮戊二酸 → 琥珀酰CoA + CO2 + NADH+H+⑷ 四次脱氢反应ü 异柠檬酸  → α-酮戊二酸 + CO2 + NADH+H+ü α-酮戊二酸  →  琥珀酰CoA + CO2 + NADH+H+ü 琥珀酸  →  延胡索酸 + FADH2ü 苹果酸  →  草酰乙酸 +  NADH+H+糖有氧氧化的调节见表4-2。表4-2 糖有氧氧化的调节激活剂抑制剂附 注丙酮酸脱氢酶复合体AMPATP乙酰CoA、NADH+H+变构调节 + 共价修饰柠檬酸合成酶--非关键酶异柠檬酸脱氢酶ADPATP、NADH主要调节点、反馈抑制α-酮戊二酸脱氢酶Ca2+ATP、NADP、琥珀酰CoA反馈抑制巴斯德效应:糖的有氧氧化抑制糖酵解的现象。三羧酸循环的意义² 氧化供能。² 三大营养素彻底氧化分解的最终代谢通路。² 是三大营养物质互变的枢纽。² 可为其他合成代谢提供小分子的前体CoA。有氧氧化生成的ATP表4-3 糖有氧氧化生成ATP的详细部位说明反  应辅 酶ATP第一阶段葡萄糖 → 6-P-葡萄糖-16-P-果糖 → 1,6-双磷酸果糖-12个拷贝分子3-磷酸甘油醛 → 1,3-二磷酸甘油酸NAD+2 or 3 *×21,3-二磷酸甘油酸 → 3-磷酸甘油酸底物水平1×2磷酸烯醇式丙酮酸 → 丙酮酸底物水平1×2第二阶段丙酮酸 → 乙酰CoANAD+3×2第三阶段异柠檬酸 → α-酮戊二酸NAD+3×2α-酮戊二酸 → 琥珀酰CoANAD+3×2琥珀酰CoA → 琥珀酸底物水平1×2琥珀酸 → 延胡索酸FAD2×2延胡索酸 → 苹果酸NAD+3×2净生成 36 or 38*糖酵解过程中产生的NADH+H+,如果经苹果酸穿梭机制,可以产生3个ATP,若经磷酸甘油穿梭机制,则产生2个ATP分子。四、 磷酸戊糖途径反应过程及生理意义磷酸戊糖途径的反应过程:在胞浆中进行,分为两个阶段² 第一阶段是氧化反应,生成磷酸戊糖、NADPH+H+及CO2² 第二阶段是基团转移反应,生成3-P-甘油醛和6-P-果糖² 总反应式:3×6-P-葡萄糖 + 6NADP+→2×6-P-果糖 + 3-P-甘油醛 + 6NADPH+H+ + 3CO2磷酸戊糖途径的生理意义² 为核酸的生物合成提供核糖。² 提供NADPH作为供氢体参与多种代谢反应。⑴ NADPH是体内许多合成代谢的供氢体。⑵ NADPH参与体内羟化反应。⑶ NADPH还用于维持谷胱甘肽的还原状态。五、 糖原合成及分解的基本反应过程、部位、关键酶调节及生理意义。糖原合成与糖原分解见表4-4。表4-4 糖原合成与糖原分解的比较糖原合成糖原分解部 位肝脏、肌肉肝脏、肌肉关键酶有活性的糖原合酶a(去磷酸化形式)磷酸化酶a(磷酸化形式)无活性的糖原合酶b(磷酸化形式)磷酸化酶b(去磷酸化形式)作用部位α-1,4-糖苷键、α-1,6-糖苷键能量消耗增加一个糖分子,消耗2个ATP不需要生理作用能量的储备维持血糖(肝)酵解供能(肌肉)六、 糖异生概念、反应过程、关键酶调节及生理意义糖异生概念:从非糖化合物(乳酸、甘油、生糖氨基酸)转变为葡萄糖或糖原的过程。² 进行糖异生的主要器官是肝脏,肾脏具有肝脏1/10的异生糖能力糖异生的过程:记忆要点:反应有“一、二、三” 。⑴ 一次反应一次ATP的消耗:丙酮酸 + CO2 + ATP → 草酰乙酸   一次GTP的消耗:草酰乙酸+ GTP → 磷酸烯醇式丙酮酸 ⑵ 二种转运草酰乙酸的途径ü 苹果酸穿梭机制:丙酮酸或生成丙氨酸的生糖氨基酸为原料异生糖时。ü 谷草转氨酶生成天冬氨酸机制:以乳酸为原料异生为糖时。⑶ 三次能障的绕行ü 丙酮酸 → 草酰乙酸 → 磷酸烯醇式丙酮酸ü 1,6-二-磷酸-果糖 → 6-P-果糖(果糖二磷酸酶-1催化)ü 6-P-葡萄糖 → 葡萄糖(葡萄糖-6-磷酸酶催化)糖异生的调节² 糖异生途径与糖酵解途径是方向相反的两条代谢途径。² 通过3个底物循环进行有效调节。糖异生的生理意义² 维持血糖浓度恒定。² 补充肝糖原。² 调节酸碱平衡。乳酸循环(Cori循环)² 概念:肌收缩(尤其氧供应不足时)通过糖酵解生成乳酸。乳酸通过细胞膜弥散进入血液后入肝,在肝内异生为葡萄糖。葡萄糖释入血液后又被肌摄取。如此形成的循环。² 形成原因:肝内糖异生活跃,且有葡萄糖-6-磷酸酶水解6-磷酸葡萄糖释放葡萄糖; 肌肉糖异生活性低,且无葡萄糖-6-磷酸酶。² 生理意义:避免损失乳酸。防止乳酸堆积引起酸中毒。糖的三条分解代谢途径的比较见表4-5。表4-5 三种糖分解代谢的比较糖酵解有氧氧化磷酸戊糖途径反应条件缺氧有氧-部位胞液胞液、线粒体胞液关键酶已糖激酶、6-P-果糖激酶1、丙酮酸激酶丙酮酸脱氢酶复合体、柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体6-P-葡萄糖脱氢酶产物乳酸CO2和水磷酸核糖、NADPH能量生成净生成2个ATP净生成36或38个ATP没有ATP生成生理意义①迅速提供能量②成熟红细胞的供能③某些代谢活跃的组织供能①氧化供能②三大营养素彻底氧化分解的最终代谢通路③三大营养物质互变的枢纽①为核酸合成提供核糖②提供合成代谢反应的还原当量七、 血糖正常值、血糖来源与去路。激素对血糖浓度的调节² 血液正常值: 3.89~6.1mmol/L。² 血糖来源有三:⑴食物消化吸收 ⑵肝糖原分解 ⑶糖异生² 血糖去路有四:⑴无氧酵解 ⑵有氧氧化 ⑶磷酸戊糖途径 ⑷转化为脂肪、氨基酸第五章八、 什么是脂类,包括哪些物质脂类:脂肪及类脂的总称² 脂肪:甘油三酯或称三脂肪酸甘油酯。² 类脂:固醇及其酯、磷脂及糖脂,细胞的膜结构重要组分。脂肪酸的来源有二² 来源一是自身合成如饱和脂肪酸及单不饱和脂肪酸。² 来源二由代谢物供给如必需脂肪酸,某些多不饱和脂肪酸。九、 甘油三酯合成的两种途径和甘油的分解代谢甘油三酯合成的两种途径² 原料:所需的甘油及脂肪酸主要由葡萄糖代谢提供,亦可通过食物供给。² 甘油一酯途径:小肠粘膜细胞,初始底物为2-甘油一酯,1,2-甘油二酯为中间产物。² 甘油二酯途径:肝细胞及脂肪细胞,初始底物为3-P-甘油,磷脂酸和1,2-甘油二酯为中间产物。甘油的分解代谢1. 甘油 + ATP→ 3-P甘油 (胞液中)2. 3-P甘油→ 磷酸二羟丙酮(3-P甘油醛)+ NADH+H+(胞液中)3. 3-P甘油醛→ 1,3-二磷酸甘油酸 + NADH+H+(胞液中)4. 1,3-二磷酸甘油酸→ 3-磷酸甘油酸 + ATP(胞液中)5. 磷酸烯醇式丙酮酸→ 丙酮酸 + ATP(胞液中)6. 丙酮酸→ 15 ATP(线粒体)由上可知,一分子甘油彻底氧化分解产生的ATP分子数为20个或22个(在胞液中的两次脱下的NADH+H+经不同的转运途径运输入线粒体中分别产生2个或3个ATP分子)十、 脂肪动员的概念及特点脂肪动员:储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸及甘油并释放入血供其它组织氧化利用的过程。关键酶:激素敏感性甘油三酯脂肪酶HSL,也是脂肪分解的限速酶² 激活:脂解激素如肾上腺素、胰高血糖素、ACTH、TSH² 抑制:胰岛素、前列腺素E2、烟酸十一、 脂肪酸β氧化过程的特点脂肪酸β氧化的过程:三个步骤² 第一步:脂酸的活化,生成脂酰CoA,胞液中进行,脂酰CoA合成酶催化脂肪酸+ ATP + 辅酶A → 脂酰CoA + PPi² 第二步:脂酰CoA进入线粒体  依赖肉碱脂酰转移酶I(外膜上)、肉碱-肉碱脂酰转位酶(内膜上)、肉碱脂酰转移酶II(内膜上)三种酶作用转运。肉碱脂酰转移酶I是限速酶。² 第三步:脂酸的β氧化 每一次β氧化需要四个反应依次连续进行1. 脱 氢:生成FADH22. 加 水:3. 再脱氢:生成NADH+H+4. 硫 解:生成一分子乙酰CoA和脂酰(n-2)CoA,(n为碳原子个数)脂酸氧化的能量生成:以16碳的软脂酸为例² 产生的总能量是131ATP,脂酸活化时相当于消耗两个ATP,净产生129个ATP分子² 含有2n个碳原子的脂肪酸彻底氧化分解时可产生n个乙酰CoA分子、n-1个FADH2分子、n-1个NADH+H+分子故总产生12×n + 2×(n-1) + 3×(n-1)=17n-5个ATP,净产生17n-7个ATP² 例14碳软脂酸分解,最终净产生114个ATP十二、 酮体生成过程的特点酮体:乙酰乙酸、β-羟丁酸及丙酮² β-羟丁酸 + NAD+ ←→ 乙酰乙酸 + NADH+H+酮体代谢的特点:肝内生酮肝外用。² 肝内生酮:肝细胞内有生成酮体的酶,HMG CoA合成酶是合成的限速酶。注:肾脏也可以少量生成酮体。² 肝外用酮:1. 琥珀酰CoA转硫酶(心、肾、脑、骨骼肌)2. 乙酰乙酰CoA硫解酶(心、肾、脑、骨骼肌)3. 乙酰乙酰硫激酶(心、肾、脑)酮体生成的意义² 为肝外组织(脑、肌组织)提供能源。² 脑组织在糖供应不足时,利用酮体供能。² 正常情况下,血中酮体为0.03-0.5 mmol/L。酮体生成的调节² 酮体生成增加:饥饿时,胰高血糖素增多,脂肪动员加强。² 酮体生成减少:饱食后,胰岛素分泌增多,脂肪动员减弱。² 丙二酯CoA抑制脂酰CoA进入线粒体,减少酮体生成。十三、 脂酸的合成代谢合成部位:肝、肾、脑、肺、乳腺及脂肪组织的胞液中。合成原料:由糖代谢而来的乙酰CoA。合成的过程:两大步骤² 第一步:丙二酰CoA的合成,乙酰CoA羧化酶催化,生物素为辅基,Mn2+为激活剂乙酰CoA + ATP + HCO3- → 丙二酰CoA² 第二步:脂酸合成,由7种酶蛋白的多酶体系(原核)或多功能酶(真核)催化乙酰CoA + 7丙二酰CoA + 14NADPH+H+ → 软脂酸(n=16)脂酸碳链的延长² 内质网脂酸碳链延长酶体系:主要方式,以丙二酰CoA为二碳供体。² 线粒体酶体系:生成硬脂酸为主,乙酰CoA为二碳供体。脂酸分解与脂酸合成的比较脂酸分解与脂酸合成的比较见表5-1。表5-1 脂酸分解与脂酸合成的比较脂酸的分解(β-氧化)脂酸的合成合成部位脑组织外的所有组织,先胞液,后线粒体肝、肾、脑、肺、乳腺及脂肪组织的胞液中主要代谢原料脂肪酸乙酰CoA主要代谢过程第一步:脂肪酸的跨膜运输第二步:脂肪酸的β氧化第一步:丙二酰CoA的合成第二步:脂酸合成关键酶肉碱脂酰CoA转移酶I乙酰CoA羧化酶所需的还原当量FAD、NAD+NADPH重要的中间产物乙酰CoA丙二酸单酰CoA(第六版教材中称丙二酰CoA)CO2作为参加者是不是酰基载体CoAACP十四、 几种多不饱和脂酸及重要衍生物² 不饱和脂酸包括油酸、软油酸、亚油酸、α亚麻酸和花生四烯酸。² 油酸、软油酸机体可以自身合成;后三种必需从食物中供给,称为必需脂肪酸。² 亚油酸可以转变为花生四烯酸及其衍生物(前列腺素、血栓口恶烷及白三烯)。十五、 磷脂概念、各类磷脂的结构特点及磷脂酶的作用特点磷脂:含磷酸的脂类。² 甘油磷脂:由甘油构成的磷脂,常见甘油磷脂的比较见表5-2。² 鞘磷脂:由鞘氨醇构成的磷脂表5-2 常见甘油磷脂的比较取代基甘油磷脂名称合成方式取代基提供中间产物H磷脂酸3-磷酸甘油胆碱磷脂酰胆碱 (卵磷脂)甘油二酯合成途径CDP-胆碱1,2-甘油二酯乙醇胺磷脂酰乙醇胺(脑磷脂)甘油二酯合成途径CDP-乙醇胺1,2-甘油二酯甘油磷脂酰甘油丝氨酸磷脂酰丝胺酸CDP-甘油二酯途径丝氨酸CDP-甘油二酯磷脂酰甘油二磷脂酰甘油(心磷脂)CDP-甘油二酯途径磷脂酰甘油CDP-甘油二酯肌醇磷脂酰肌醇CDP-甘油二酯途径肌醇CDP-甘油二酯磷脂酶的作用特点常见磷脂酶的作用特点比较见表5-3,常见磷脂产物的作用特点比较见表5-4表5-3 常见磷脂酶的作用特点比较酶作用部位产  物磷脂酶A2甘油磷脂分子中2位酯键溶血磷脂1 + 多不饱和脂酸磷脂酶A1甘油磷脂分子中1位酯键溶血磷脂2 + 脂酸磷脂酶C甘油磷脂分子中3位酯键甘油二酯 + 磷酸胆碱(乙醇胺)磷脂酶D磷酸取代基间酯键磷酸甘油 + 含氮碱表5-4 常见磷脂产物的作用特点比较被消化物质酶作用部位产  物溶血磷脂1磷脂酶B1溶血磷脂分子中的1位酯键甘油磷酸胆碱 + FA溶血磷脂2磷脂酶B2溶血磷脂分子中的2位酯键甘油磷酸胆碱 + FA甘油磷酸胆碱磷脂酶D磷酸取代基间酯键磷酸甘油 + 含氮碱溶血磷脂酶I=磷脂酶B1十六、 鞘磷脂的代谢特点记忆要点如下:² 含量最多的鞘磷脂是神经鞘磷脂。² 神经鞘磷脂的组成为:鞘氨醇 + 脂酸 + 磷酸胆碱ü 取代基提供时是由CDP-胆碱提供磷酸胆碱ü 鞘氨醇合成时的原料是软脂酰CoA和丝氨酸² 神经鞘磷脂的降解的酶属于磷脂酶C类。十七、 胆固醇的合成特点及转归合成部位:成年动物脑组织及成熟细细胞外的所有组织。合成原料:“三高合成”。² 耗能(36分子ATP):线粒体的糖氧化。² 耗料(18分子乙酰CoA):线粒体的糖氧化。² 耗氢(36分子NADPH + H+):胞液中的磷酸戊糖途径。合成步骤:三个阶段² 第一阶段:甲羟戊酸的生成,HMGCoA还原酶是限速酶。² 第二阶段:鲨烯(30C)的生成。² 第三阶段:胆固醇(27C)的合成。胆固醇合成的调节胆固醇合成的调节见表5-5。表5-5 胆固醇合成的调节合成增加合成减少HMGCoA还原酶活性变化增高降低昼夜变化午夜最高正午最小激素影响胰岛素增加、甲状腺素增加胰高血糖素增加、皮质醇增加饮食因素饱食促进合成饥饿禁食导致合成减少反馈调节胆固醇自身的负反馈作用胆固醇的转归² 转变为胆汁酸。² 转化为类固醇激素。² 转化为7-脱氢胆固醇,经紫外线照射转变为维生素D3。十八、 血浆脂蛋白的分类、组成及功能特点常见血浆脂蛋白的比较见表5-6。表5-6 常见血浆脂蛋白的比较CMVLDLLDLHDL名 称乳糜微粒极低密度脂蛋白低密度脂蛋白高密度脂蛋白密度高低从左往右,密度由低到高依次排列 CM<VLDL<LDL<HDL电泳对应蛋白原点前β球蛋白β球蛋白α球蛋白物质含量蛋白质含量---最多甘油三脂含量最多---胆固醇含量--最多-载脂蛋白组成apoB48最多apoE最多apoB100最多apo AⅠ、AⅡ最多合成部位小肠粘膜细胞肝细胞血浆中由VLDL转变肝、肠、血浆功 能转运外源性甘油三酯及胆固醇转运内源性甘油三酯及胆固醇转运内源性胆固醇逆向转运胆固醇HDL的记忆点:² HDL按密度大小:新生HDL > HDL3 > HDL2 > HDL1 。² HDL1又称为HDLc,仅在高胆固醇膳食后血中出现。² 正常人血浆中主要含有HDL2和HDL3。² HDL的功能是逆向转运胆固醇至肝脏(高脂血症中,无HDL的升高)。² HDL在血浆中的半衰期为3-5天。² HDL是apoCII的贮存库。第六章一、 生物氧化与体外燃烧的异同见表6-1。表6-1 生物氧化与体外燃烧的异同生物氧化体外燃烧温度37℃高温是否有酶需要不需要能量释放逐步立刻方式加氧、脱氢、失电子燃烧二、 呼吸链的组成呼吸链:代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水。由于此过程与细胞摄取氧的呼吸过程相关,故称呼吸链。呼吸链的基本组成见表6-2。表6-2 四种复合体的比较复合体酶名称位 置辅 基所含细胞色素复合体INADH-泛醌还原酶内膜中FMN、Fe-S复合体II琥珀酸-泛醌还原酶内膜内侧FAD、Fe-Sb560复合体III泛醌-细胞色素C还原酶内膜中铁卟啉、Fe-Sb562、b566 、C1复合体IV细胞色素C氧化酶内膜中铁卟啉、Cua 、a3注:泛醌(辅酶Q)与cytC与线粒体内膜结合不紧密,极易分离,故不包含在上述四种复合体中呼吸链中辅酶的组成成分与功能见表6-3。表6-3 呼吸链中辅酶的比较辅酶组成成分功能一(递氢)功能二(递电子)NAD+维生素PP一个H一个eNADP+维生素PP一个H一个eFMN维生素B2两个H两个eFAD维生素B2两个H两个eFe-S铁原子-一个e泛醌CoQ两个H两个e细胞色素cyt铁卟啉-一个e注:递氢体同时也是递电子体;单电子传递体是Fe-S、细胞色素。两条呼吸链² NADH呼吸链:复合体I → 复合体III → 复合体IV乳酸脱氢酶、苹果酸脱氢酶、异柠檬酸脱氢酶、谷氨酸脱氢酶、β羟丁酸脱氢酶² 琥珀酸呼吸链:复合体II → 复合体III → 复合体IV琥珀酸脱氢酶、磷酸甘油脱氢酶、脂酰CoA脱氢酶² 细胞色素在呼吸链中的排列顺序b560→b562→b566→c1→c→a→a3→O2三、 氧化磷酸化的概念及特点P/O比值:物质氧化时,每消耗1摩尔氧原子所消耗无机磷的摩尔数(消耗ADP的摩尔数),即生成ATP的摩尔数。 表6-4 一些底物的P/O比值氧化磷酸化:又称偶联磷酸化,代谢物经氧化分解时通过呼吸链电子传递,该过程中偶联ADP的磷酸化,生成ATP,是体内ATP生成最主要的方式。底物水平磷酸化:直接将代谢物分子中的能量转移至ADP(或GDP),生成ATP(或GTP)的过程。² 1,3-二磷酸甘油酸→ 3-磷酸甘油酸 (ATP)² 磷酸烯醇式丙酮酸→ 丙酮酸 (ATP)² 琥珀酰CoA→ 琥珀酸 (GTP)四、 影响氧化磷酸化的因素三种抑制剂的比较见表6-5。表6-5 三种抑制剂的比较抑制剂类别抑制剂名称抑制剂作用原理呼吸链抑制剂(阻断呼吸链中某些部位电子传递)鱼藤酮、粉蝶霉素A、异戊巴比妥与复合体I中的Fe-S结合抗霉素A、二硫基丙醇阻断复合体III中cyt b与cytc1间电子传递CO、CN-、N2、H2S抑制细胞色素C氧化酶解偶联剂二硝基苯酚氧化过程与磷酸化偶联过程脱离氧化磷酸化抑制剂(对电子传递及ADP磷酸化均有抑制作用)寡霉素阻止质子回流,抑制ATP生成五、 ATP的特点高能磷酸酯键:水解时释放的能量较多(大于21kJ/mol)的磷酸酯键。常见的高能化合物² 磷酸肌酸:肌肉和脑中能量的储存。² 磷酸烯醇式丙酮酸:糖酵解与糖异生的中间产物。² 乙酰磷酸。² 乙酰CoA:三大物质代谢的枢扭。² ATP、GTP、UTP、CTP。六、 其他氧化体系:需氧脱氢酶和氧化酶、过氧化物酶、超氧物歧化酶和微粒体酶除线粒体的氧化体系外,在微粒体、过氧化物酶体以及细胞其他部位还存在其他氧化体系,参与呼吸链以外的氧化过程,其过程是不伴随磷酸化,不能生成ATP,主要与体内代谢物、药物和毒物的生物转化有关。见表6-6。表6-6 其他氧化体系的比较其他氧化体系作用方式辅基举 例需氧脱氢酶直接利用氧为受氢体催化底物氧化FMN或FAD氧化酶直接利用氧为受氢体催化底物氧化Cu2+细胞色素C氧化酶抗坏血酸氧化酶过氧化氢酶(触酶)2H2O2-→2H2O + O2血红素过氧化氢酶过氧化物酶R + H2O2-→RO + H2ORH2+ H2O2-→R + 2H2O血红素过氧化物酶超氧物歧化酶(SOD)Cu2+、Zn2+(胞浆) Mn2+ (线粒体)超氧物歧化酶加单氧酶RH + NADPH+H+ +O2→ROH+NADP+Cyt P450羟化酶加双氧酶催化氧分子中的2个氧原子加到底物带双键的2个碳原子上-色氨酸吡咯酶第七章十九、 蛋白质的营养作用² 蛋白质的营养价值取决于食物蛋白质含必需氨基酸的种类,数量以及各种氨基酸的比例与人体蛋白质的接近程度。² 蛋白质的互补作用是指几种营养价值较低的蛋白质如果合理调配使用,因所含必需氨基酸可相互补充,故可提高其营养价值。² 必需氨基酸是指人体需要但不能自身合成,必须由食物供给的氨基酸,共8种。二十、 蛋白质的消化吸收与腐败² 食物蛋白质的消化自胃中开始,主要在小肠中进行。² 胃蛋白酶、胰蛋白酶是蛋白质消化的主要酶。² 水解生成的氨基酸及二肽可通过主动运输的方式被吸收。² 肠道细菌对未消化的蛋白质和氨基酸可产生腐败作用。二十一、 氨基酸的几种脱氨基作用转氨基作用:在转氨酶的作用下,一种氨基酸的氨基转移到另一种α-酮酸上生成另一种氨基酸和相应的α-酮酸的过程。² 转氨基的反应是可逆的。² 转氨酶的辅酶是维生素B6² 最常见的转氨酶是谷丙转氨酶GPT和谷草转氨酶GOT氧化脱氨基作用:在L-谷氨酸脱氢酶的作用下,谷氨酸脱氢脱氨基生成氨和α-酮戊二酸的过程。联合脱氨酸作用:转氨酶与L-谷氨酸脱氢酶或腺苷酸脱氨酶联合作用脱去氨基的过程。² 转氨酶与L-谷氨酸脱氢酶的联合作用主要在肝、肾组织中进行。² 转氨酶与腺苷酸脱氨酶的嘌呤核苷酸循环联合作用主要在肌肉中进行。二十二、 α-酮酸的代谢² 经氨基化生成非必需氨基酸。² 转变成糖及脂类。(氨基酸的分类见表7-1)表7-1 氨基酸的分类类 别氨基酸生糖氨基酸甘氨酸、丝氨酸、缬氨酸、组氨酸、精氨酸、半胱氨酸、胱氨酸、羟脯氨酸、丙氨酸、谷氨酸、谷胺酰胺、天冬氨酸、天冬酰胺、甲硫氨酸生酮氨基酸亮氨酸、赖氨酸生糖兼生酮氨基酸异亮氨酸、苯丙氨酸、酪氨酸、色氨酸、苏氨酸² 氧化供能。二十三、 体内氨的来源与转运氨的来源有三² (1)氨基酸脱氨基作用产生的氨,是体内氨的主要来源。² (2)肠道吸收的氨:①肠内氨基酸在细菌作用下产生的氨;②肠道尿素酶水解尿素产生的氨。² (3)肾小管上皮细胞分泌的氨主要来自谷氨酰胺。氨的转运有二² 丙氨酸-葡萄糖循环ü 肌肉中的氨以无毒的丙氨酸形式运输到肝,可异生为糖。ü 肝为肌肉提供了生成丙酮酸的葡萄糖。² 谷氨酰胺的运氨作用ü 从脑、肌肉向肝或肾运氨。ü 谷氨酰胺既是氨的解毒产物,也是氨的储存及运输形式。二十四、 尿素代谢特点代谢特点记忆要点:一、二、三、四。² 一个限速酶:精氨酸代琥珀酸合成酶。² 二个反应部位:线粒体与胞液。  二个N原子来源:一个来源于线粒体中游离的NH3,另一个来源于胞液中的天冬氨酸。² 三个ATP的消耗,线粒体里消耗两个ATP,胞液中消耗1个ATP(两个磷酸键)。  三个重要中间产物:鸟氨酸、瓜氨酸、精氨酸。² 四个高能磷酸键:线粒体里两个磷酸键,胞液中两个磷酸键。   四个反应步骤。ü 氨基甲酰磷酸的生成线粒体中(氨基甲酰磷酸合成酶I是关键酶)ü 瓜氨酸的生成线粒体中ü 精氨酸代琥珀酸的生成 胞液中(精氨酸代琥珀酸合成酶是限速酶)ü 精氨酸的水解、尿素的生成胞液中尿素合成的调节见表7-2。表7-2 尿素合成的调节合成增加合成减少CPS-I的调节AGA是CPS-I的变构激活剂精氨酸是AGA合成酶的激活剂-食物蛋白质的影响高蛋白膳食低蛋白膳食尿素合成酶的影响氨基甲酰磷酸合成酶I是关键酶精氨酸代琥珀酸合成酶是尿素合成的限速酶二十五、 氨基酸的脱羧基作用表7-3。表7-3 氨基酸的脱羧基作用氨基酸脱羧基后生成相应的胺类功  能谷氨酸γ-氨基丁酸脑中GABA含量较多,是抑制性神经递质半胱氨酸牛磺酸牛磺酸是结合型胆汁酸的组成成分脑组织含有较多的牛磺酸,有重要的生理功能组氨酸组胺组胺在体内分布广泛,主要存在于肥大细胞中组胺是一种强烈的血管舒张剂,增加毛细血管的通透性组胺还可刺激胃蛋白酶及胃酸的分泌色氨酸5-羟色胺5-羟色胺广泛分布体内各组织脑内的5-羟色胺可作为神经递质,具有抑制作用外周组织中的5-羟色胺有收缩血管的作用二十六、 一碳单位的代谢特点² 一碳单位的定义:某些氨基酸在分解代谢过程产生含有一个碳原子的基团。² 一碳单位的构成:甲基、甲烯基、甲酰基、亚氨甲基、甲炔基(不包括CO2)。² 一碳单位的来源:甘氨酸、组氨酸、色氨酸、丝氨酸。² 一碳单位的功效:作为合成嘌呤核苷酸与嘧啶核苷酸的原料。ü 嘌呤核苷酸的合成需要由一碳单位提供嘌呤碱基C2、C8的来源。ü 嘧啶核苷酸的合成仅在胸苷酸(dTMP)合成时,需要N10-CH2-FH4提供甲基。二十七、 含硫氨基酸、芳香族氨基酸和支链氨基酸的代谢特点含硫氨基酸代谢² SAM(S-腺苷甲硫氨酸、活性甲硫氨酸)是甲基的活性供体,维生素B12是转甲基酶的辅酶² N5-CH3-FH4是体内甲基的间接供体,它使同型半胱氨酸转变成甲硫氨酸的反应是其唯一的反应² SAM使底物甲基化后,自身转变为S-腺苷同型半胱氨酸,后者去腺苷后转变为同型半胱氨酸。如右图所示² 同型半胱氨酸与半胱氨酸概念不同,前者比后者在分子结构上多一个甲基,其结构式如右图所示。肌酸的代谢² 肌酸的合成是由精氨酸、甘氨酸并由SAM提供甲基合成而来。² 磷酸肌酸是高能磷酸化合物。² 肌酸和磷酸肌酸的代谢终产物是肌酸酐。² 肌酸激酶有三种同工酶:MM型(骨骼肌中)、MB型(心肌中)、BB型(脑组织中)。芳香族氨基酸代谢² 苯丙氨酸和酪氨酸代谢ü 苯丙氨酸 → 酪氨酸 代谢的酶是苯丙氨酸羟化酶,此酶缺乏导致苯丙酮酸尿症。ü 酪氨酸  → 多巴胺(肾上腺素、去甲肾上腺素), 主要在神经组织是肾上腺组织。ü 酪氨酸  → 黑色素(黑色素细胞), 关键酶是酪氨酸酶,缺乏造成白化病。ü 酪氨酸分解可产生延胡索酸和乙酰乙酸,为生糖兼生酮氨基酸。² 色氨酸代谢ü 色氨酸代谢可产生:⑴5-羟色胺;⑵N5-CHO-FH4 ;⑶少量尼克酸;⑷丙酮酸与乙酰乙酰辅酶A,属于生糖兼生酮氨基酸。支链氨基酸代谢² 亮氨酸  → 乙酰辅酶A + 乙酰乙酰辅酶A生酮氨基酸² 异亮氨酸 → 乙酰辅酶A + 琥珀酰辅酶A生糖兼生酮氨基酸² 缬氨酸  → 琥珀酰辅酶A生糖氨基酸白化病:人体由于缺乏酪氨酸酶,黑色素合成障碍,皮肤、毛发等发白。苯酮酸尿症:人体内先天性缺乏苯丙氨酸羟化酶,使苯丙氨酸不能正常地转变成酪氨酸,导致苯丙氨酸蓄积并经转氨基作用生成苯丙酮酸,后者进一步转变成苯乙酸等衍生物。此时,尿中出现大量苯丙酮酸等代谢产物。而苯丙酮酸的堆积对中枢神经系统有毒性,患儿的智力发充障碍。第八章二十八、 体内核苷酸的分布特点与生物学功能核苷酸体内的分布² 人体内的核苷酸主要由机体细胞自身合成。² 核苷酸不属于营养必需物质。² 细胞中以5’-核苷酸形式存在,以5’-ATP含量最多。核苷酸的生物学功能² 作为核酸合成的原料:是核苷酸最主要的功能。² 体内能量的利用形式:AT
展开阅读全文
  语墨文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:[资料]查锡良《生物化学》复习精要.doc
链接地址:http://www.wenku38.com/p-34095.html

                                            站长QQ:1002732220      手机号:18710392703    


                                                          copyright@ 2008-2020 语墨网站版权所有

                                                             经营许可证编号:蜀ICP备18034126号

网站客服微信
收起
展开